Answer
Verified
446.1k+ views
Hint:
As we know that, the colligative properties depend upon the number of solute particles. There are four types of colligative properties in which by one property, the above question can be solved.
Complete step by step solution
It is known that as the sugar (solute) is dissolved in water it occupies the position of water and now there is a small number of molecules of water so the freezing point becomes low and that is known by depression in freezing point.
For depression in freezing point of a solvent, we have a relationship between the depression in the freezing point and molality of the solution that can be written as follows:
$\Delta {T_f} = {K_f}{\rm{m}}$
Here, $\Delta {T_f}$ is represented as the depression in the freezing point of the solvent, ${K_f}$ is the molal depression constant for the given solvent and ${\rm{m}}$ is the molality of the solution.
We are given as
\[{K_{\rm{f}}} = \,1.86{\,^{\rm{0}}}{\rm{C}}{{\rm{m}}^{{\rm{ - 1}}}} = 274.86\,{\rm{K}}{{\rm{m}}^{{\rm{ - 1}}}}\]
\[{{\rm{M}}_{\rm{0}}} = {\rm{342}}\]
\[{{\rm{M}}_{\rm{2}}} = {\rm{4}}\,{\rm{kg}}\]
\[{\rm{\Delta }}{{\rm{T}}_{\rm{f}}}\]=\[ - 3.72{\,^{\rm{0}}}{\rm{C}} = {\rm{269}}{\rm{.28}}\,{\rm{K}}\]
Now, first of all we will calculate the molality by the above equation.
\[
{\rm{269}}{\rm{.28}}\,{\rm{K}} = {\rm{274}}{\rm{.86}}\,{\rm{K}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{ \times m}}\\
{\rm{m}} = \dfrac{{{\rm{269}}{\rm{.28}}\,{\rm{K}}}}{{{\rm{274}}{\rm{.86}}\,{\rm{K}}{{\rm{m}}^{{\rm{ - 1}}}}}}\\
= {\rm{0}}{\rm{.98}}\,{\rm{m}}
\]
Now, we know that molarity is defined as the number of solute particles dissolved in per kilogram of solvent. The solvent is water and suppose \[{{\rm{w}}_{\rm{0}}}\] is weight of sugar which is our question.
\[
molality(m) \, = \, \dfrac{\rm(w_0/M_0)} {\rm{solvent(g)}} \times 1000 ---(ii)
\]
Now, putting the values in the above equation, we get,
\[
{{\rm{w}}_{\rm{0}}} = {\rm{4}}\,{\rm{kg}} \times {\rm{0}}{\rm{.98}}\,{\rm{m \times 0}}{\rm{.342}}\dfrac{{{\rm{kg}}}}{{{\rm{mole}}}}\\
= {\rm{1}}{\rm{.34}}\,{\rm{kg}}
\]
Therefore, the mass of the sugar is \[{\rm{1}}{\rm{.34}}\,{\rm{kg}}\].
Note:
We can also calculate the other values by using the above formula such as depression in freezing point, weight of solvent etc.
As we know that, the colligative properties depend upon the number of solute particles. There are four types of colligative properties in which by one property, the above question can be solved.
Complete step by step solution
It is known that as the sugar (solute) is dissolved in water it occupies the position of water and now there is a small number of molecules of water so the freezing point becomes low and that is known by depression in freezing point.
For depression in freezing point of a solvent, we have a relationship between the depression in the freezing point and molality of the solution that can be written as follows:
$\Delta {T_f} = {K_f}{\rm{m}}$
Here, $\Delta {T_f}$ is represented as the depression in the freezing point of the solvent, ${K_f}$ is the molal depression constant for the given solvent and ${\rm{m}}$ is the molality of the solution.
We are given as
\[{K_{\rm{f}}} = \,1.86{\,^{\rm{0}}}{\rm{C}}{{\rm{m}}^{{\rm{ - 1}}}} = 274.86\,{\rm{K}}{{\rm{m}}^{{\rm{ - 1}}}}\]
\[{{\rm{M}}_{\rm{0}}} = {\rm{342}}\]
\[{{\rm{M}}_{\rm{2}}} = {\rm{4}}\,{\rm{kg}}\]
\[{\rm{\Delta }}{{\rm{T}}_{\rm{f}}}\]=\[ - 3.72{\,^{\rm{0}}}{\rm{C}} = {\rm{269}}{\rm{.28}}\,{\rm{K}}\]
Now, first of all we will calculate the molality by the above equation.
\[
{\rm{269}}{\rm{.28}}\,{\rm{K}} = {\rm{274}}{\rm{.86}}\,{\rm{K}}{{\rm{m}}^{{\rm{ - 1}}}}{\rm{ \times m}}\\
{\rm{m}} = \dfrac{{{\rm{269}}{\rm{.28}}\,{\rm{K}}}}{{{\rm{274}}{\rm{.86}}\,{\rm{K}}{{\rm{m}}^{{\rm{ - 1}}}}}}\\
= {\rm{0}}{\rm{.98}}\,{\rm{m}}
\]
Now, we know that molarity is defined as the number of solute particles dissolved in per kilogram of solvent. The solvent is water and suppose \[{{\rm{w}}_{\rm{0}}}\] is weight of sugar which is our question.
\[
molality(m) \, = \, \dfrac{\rm(w_0/M_0)} {\rm{solvent(g)}} \times 1000 ---(ii)
\]
Now, putting the values in the above equation, we get,
\[
{{\rm{w}}_{\rm{0}}} = {\rm{4}}\,{\rm{kg}} \times {\rm{0}}{\rm{.98}}\,{\rm{m \times 0}}{\rm{.342}}\dfrac{{{\rm{kg}}}}{{{\rm{mole}}}}\\
= {\rm{1}}{\rm{.34}}\,{\rm{kg}}
\]
Therefore, the mass of the sugar is \[{\rm{1}}{\rm{.34}}\,{\rm{kg}}\].
Note:
We can also calculate the other values by using the above formula such as depression in freezing point, weight of solvent etc.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What percentage of the solar systems mass is found class 8 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE