
How long would it take a radio wave of frequency \[6 \times {10^3}\sec \] to travel from Mars to the Earth, a distance of \[8 \times {10^7}km\]?
Answer
516.9k+ views
Hint: A radio wave is an electromagnetic wave. We know that the speed of all electromagnetic waves in a vacuum is the same, irrespective of their frequency. Again, the speed of an electromagnetic wave in a vacuum is the same as that of light, i.e. \[3 \times {10^8}\dfrac{m}{s}\]
The distance between Earth and Mars is given. Therefore we can find the time taken to cover this distance with a speed of\[3 \times {10^8}\dfrac{m}{s}\].
Formula used:
\[time = \dfrac{{dis\tan ce}}{{velocity}}\]
Distance = \[8 \times {10^7}km\]
Velocity = \[3 \times {10^8}\dfrac{m}{s}\]
Complete step-by-step solution:
Given that, a radio wave travels from Mars to Earth.
The radio wave is an electromagnetic wave. We know that the speed of all electromagnetic waves in a vacuum is the same, irrespective of their frequency.
The speed of an electromagnetic wave in a vacuum is the same as that of light, i.e. \[3 \times {10^8}\dfrac{m}{s}\]
The distance of Mars from Earth is given by\[8 \times {10^7}km\], i.e. \[8 \times {10^{10}}m\]. \[(1km{\text{ }} = {\text{ }}1000{\text{ }}m)\]
Therefore, the total time taken to travel is given by:
\[time = \dfrac{{dis\tan ce}}{{velocity}}\]
\[ \Rightarrow t = \dfrac{{8 \times {{10}^{10}}}}{{3 \times {{10}^8}}}\]
\[ \Rightarrow t = \dfrac{{800}}{3}\]
\[ \Rightarrow t = 266.67\sec \]
\[ \Rightarrow t = \dfrac{{266.67}}{{60}} = 4.44\min \]
Hence, it will take the radio wave approximately \[266.67{\text{ }}seconds\] or \[4.44{\text{ }}minutes\] to travel from Mars to Earth.
Note: From the given question, the distance between Earth and Mars is given in kilometers. Change the unit to meters and proceed. We know that one kilometer is equal to \[{10^3}\]meter and One minute is equal to \[60\] seconds.
The distance between Earth and Mars is given. Therefore we can find the time taken to cover this distance with a speed of\[3 \times {10^8}\dfrac{m}{s}\].
Formula used:
\[time = \dfrac{{dis\tan ce}}{{velocity}}\]
Distance = \[8 \times {10^7}km\]
Velocity = \[3 \times {10^8}\dfrac{m}{s}\]
Complete step-by-step solution:
Given that, a radio wave travels from Mars to Earth.
The radio wave is an electromagnetic wave. We know that the speed of all electromagnetic waves in a vacuum is the same, irrespective of their frequency.
The speed of an electromagnetic wave in a vacuum is the same as that of light, i.e. \[3 \times {10^8}\dfrac{m}{s}\]
The distance of Mars from Earth is given by\[8 \times {10^7}km\], i.e. \[8 \times {10^{10}}m\]. \[(1km{\text{ }} = {\text{ }}1000{\text{ }}m)\]
Therefore, the total time taken to travel is given by:
\[time = \dfrac{{dis\tan ce}}{{velocity}}\]
\[ \Rightarrow t = \dfrac{{8 \times {{10}^{10}}}}{{3 \times {{10}^8}}}\]
\[ \Rightarrow t = \dfrac{{800}}{3}\]
\[ \Rightarrow t = 266.67\sec \]
\[ \Rightarrow t = \dfrac{{266.67}}{{60}} = 4.44\min \]
Hence, it will take the radio wave approximately \[266.67{\text{ }}seconds\] or \[4.44{\text{ }}minutes\] to travel from Mars to Earth.
Note: From the given question, the distance between Earth and Mars is given in kilometers. Change the unit to meters and proceed. We know that one kilometer is equal to \[{10^3}\]meter and One minute is equal to \[60\] seconds.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

