
How long must a pendulum be the Moon, where $g = 16Nk{g^{ - 1}}$, to have a period of 2.0 s?
Answer
467.1k+ views
Hint: The time taken by the pendulum to move TO and FRO once is called its time period. The period of a simple pendulum depends upon various factors like the length of the suspension, gravitational acceleration, etc.
Complete step by step answer:
As we know that the time period of a simple pendulum is given by
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Where T is the time period, l is the length of suspension of the pendulum and g is the acceleration due to gravity.
Now as we know the gravity of the moon is around $\dfrac{1}{6}$that of the earth so acceleration due to the gravity of the moon can also be assumed to be around $\dfrac{1}{6}$that of the earth.
As we know the acceleration due to gravity on earth is taken as $9.8m{\sec ^{ - 2}}$
So, the acceleration due to gravity on the moon can be taken as
${g_{moon}} = \dfrac{{{g_{earth}}}}{6}$
\[{g_{moon}} = \dfrac{{9.8}}{6} = 1.6m{\sec ^{ - 2}}\]
Now we need to find the length (l) we are given that time period of oscillation to be 2 seconds and we have calculated acceleration due to gravity $\left( {{g_{moon}}} \right)$
Substituting these values, we get,
$2 = 2\pi \sqrt {\dfrac{l}{{1.6}}} $
$ \to {\left( {\dfrac{2}{{2\pi }}} \right)^2} = \dfrac{l}{{1.6}}$
$ \to {\left( {\dfrac{1}{\pi }} \right)^2} = \dfrac{l}{{1.6}}$
$ \to l = \dfrac{{1.6}}{{{\pi ^2}}}$
$ \to l = 0.162m$
Hence, the length of the pendulum should be 0.162 meters to have a time period of 2 sec on the moon.
Note:
The gravity of the moon is $\dfrac{1}{6}$that of the earth. The acceleration due to gravity on the moon can be also assumed as $\dfrac{1}{6}$that of the earth. The time period of the pendulum greatly depends upon its length and acceleration due to gravity.
Complete step by step answer:
As we know that the time period of a simple pendulum is given by
$T = 2\pi \sqrt {\dfrac{l}{g}} $
Where T is the time period, l is the length of suspension of the pendulum and g is the acceleration due to gravity.
Now as we know the gravity of the moon is around $\dfrac{1}{6}$that of the earth so acceleration due to the gravity of the moon can also be assumed to be around $\dfrac{1}{6}$that of the earth.
As we know the acceleration due to gravity on earth is taken as $9.8m{\sec ^{ - 2}}$
So, the acceleration due to gravity on the moon can be taken as
${g_{moon}} = \dfrac{{{g_{earth}}}}{6}$
\[{g_{moon}} = \dfrac{{9.8}}{6} = 1.6m{\sec ^{ - 2}}\]
Now we need to find the length (l) we are given that time period of oscillation to be 2 seconds and we have calculated acceleration due to gravity $\left( {{g_{moon}}} \right)$
Substituting these values, we get,
$2 = 2\pi \sqrt {\dfrac{l}{{1.6}}} $
$ \to {\left( {\dfrac{2}{{2\pi }}} \right)^2} = \dfrac{l}{{1.6}}$
$ \to {\left( {\dfrac{1}{\pi }} \right)^2} = \dfrac{l}{{1.6}}$
$ \to l = \dfrac{{1.6}}{{{\pi ^2}}}$
$ \to l = 0.162m$
Hence, the length of the pendulum should be 0.162 meters to have a time period of 2 sec on the moon.
Note:
The gravity of the moon is $\dfrac{1}{6}$that of the earth. The acceleration due to gravity on the moon can be also assumed as $\dfrac{1}{6}$that of the earth. The time period of the pendulum greatly depends upon its length and acceleration due to gravity.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
