
Let’s assume a function $f\left( x \right)$ be a derivable function, $f'\left( x \right) > f\left( x \right)$ and $f\left( 0 \right) = 0$. Then?
${\text{A}}{\text{. }}f\left( x \right) > 0$ for all $x > {\text{0}}$
${\text{B}}{\text{. }}f\left( x \right) < 0$ for all $x > {\text{0}}$
${\text{C}}{\text{.}}$ No sign of $f\left( x \right)$ can be ascertained
${\text{D}}{\text{. }}f\left( x \right)$ is a constant function
Answer
232.8k+ views
Hint- Here, we will be using the concept of increasing functions.
Let \[g\left( x \right) = {e^{ - x}}f\left( x \right)\]
Differentiating above function with respect to $x$, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ {{e^{ - x}}f\left( x \right)} \right] = {e^{ - x}}\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] + f\left( x \right)\dfrac{d}{{dx}}\left( {{e^{ - x}}} \right) = {e^{ - x}}f'\left( x \right) - {e^{ - x}}f\left( x \right) = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] \\
\Rightarrow g'\left( x \right) = \dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] \\
\]
Given, \[{\text{ }}f'\left( x \right) > f\left( x \right){\text{ }} \Rightarrow f'\left( x \right) - f\left( x \right) > 0\]
As we know that \[{e^{ - x}} > 0\] (always)
\[ \Rightarrow g'\left( x \right) = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] > 0\]
If the first derivative of any function is greater than zero, then it is an increasing function. From the above statement we can say that \[g\left( x \right)\] is an increasing function.
Now, for \[x > 0\] we can say that the value of the function at \[x\] is greater than the value of the function at 0 i.e., \[g(x) > g\left( 0 \right)\]
As given, \[f\left( 0 \right) = 0 \Rightarrow \]At \[x = 0\], \[g\left( 0 \right) = {e^{ - 0}}f\left( 0 \right) = 0\]
\[ \Rightarrow g(x) > g\left( 0 \right) \Rightarrow {e^{ - x}}f\left( x \right) > g\left( 0 \right) \Rightarrow \dfrac{{f\left( x \right)}}{{{e^x}}} > 0 \Rightarrow f\left( x \right) > 0\] provided \[x > 0\].
Hence, \[f\left( x \right) > 0\] for all \[x > 0\].
Therefore, option A is correct.
Note- In these types of problems we have to make an assumption in order to get to the results such as in this problem we assumed some other function as the given function multiplied by an exponentially decreasing term.
Let \[g\left( x \right) = {e^{ - x}}f\left( x \right)\]
Differentiating above function with respect to $x$, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ {{e^{ - x}}f\left( x \right)} \right] = {e^{ - x}}\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] + f\left( x \right)\dfrac{d}{{dx}}\left( {{e^{ - x}}} \right) = {e^{ - x}}f'\left( x \right) - {e^{ - x}}f\left( x \right) = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] \\
\Rightarrow g'\left( x \right) = \dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] \\
\]
Given, \[{\text{ }}f'\left( x \right) > f\left( x \right){\text{ }} \Rightarrow f'\left( x \right) - f\left( x \right) > 0\]
As we know that \[{e^{ - x}} > 0\] (always)
\[ \Rightarrow g'\left( x \right) = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] > 0\]
If the first derivative of any function is greater than zero, then it is an increasing function. From the above statement we can say that \[g\left( x \right)\] is an increasing function.
Now, for \[x > 0\] we can say that the value of the function at \[x\] is greater than the value of the function at 0 i.e., \[g(x) > g\left( 0 \right)\]
As given, \[f\left( 0 \right) = 0 \Rightarrow \]At \[x = 0\], \[g\left( 0 \right) = {e^{ - 0}}f\left( 0 \right) = 0\]
\[ \Rightarrow g(x) > g\left( 0 \right) \Rightarrow {e^{ - x}}f\left( x \right) > g\left( 0 \right) \Rightarrow \dfrac{{f\left( x \right)}}{{{e^x}}} > 0 \Rightarrow f\left( x \right) > 0\] provided \[x > 0\].
Hence, \[f\left( x \right) > 0\] for all \[x > 0\].
Therefore, option A is correct.
Note- In these types of problems we have to make an assumption in order to get to the results such as in this problem we assumed some other function as the given function multiplied by an exponentially decreasing term.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 6 Permutations and Combinations (2025-26)

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Statistics Class 11 Maths Chapter 13 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

