# Let’s assume a function $f\left( x \right)$ be a derivable function, $f'\left( x \right) > f\left( x \right)$ and $f\left( 0 \right) = 0$. Then?

${\text{A}}{\text{. }}f\left( x \right) > 0$ for all $x > {\text{0}}$

${\text{B}}{\text{. }}f\left( x \right) < 0$ for all $x > {\text{0}}$

${\text{C}}{\text{.}}$ No sign of $f\left( x \right)$ can be ascertained

${\text{D}}{\text{. }}f\left( x \right)$ is a constant function

Answer

Verified

365.1k+ views

Hint- Here, we will be using the concept of increasing functions.

Let \[g\left( x \right) = {e^{ - x}}f\left( x \right)\]

Differentiating above function with respect to $x$, we get

\[

\Rightarrow \dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ {{e^{ - x}}f\left( x \right)} \right] = {e^{ - x}}\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] + f\left( x \right)\dfrac{d}{{dx}}\left( {{e^{ - x}}} \right) = {e^{ - x}}f'\left( x \right) - {e^{ - x}}f\left( x \right) = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] \\

\Rightarrow g'\left( x \right) = \dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] \\

\]

Given, \[{\text{ }}f'\left( x \right) > f\left( x \right){\text{ }} \Rightarrow f'\left( x \right) - f\left( x \right) > 0\]

As we know that \[{e^{ - x}} > 0\] (always)

\[ \Rightarrow g'\left( x \right) = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] > 0\]

If the first derivative of any function is greater than zero, then it is an increasing function. From the above statement we can say that \[g\left( x \right)\] is an increasing function.

Now, for \[x > 0\] we can say that the value of the function at \[x\] is greater than the value of the function at 0 i.e., \[g(x) > g\left( 0 \right)\]

As given, \[f\left( 0 \right) = 0 \Rightarrow \]At \[x = 0\], \[g\left( 0 \right) = {e^{ - 0}}f\left( 0 \right) = 0\]

\[ \Rightarrow g(x) > g\left( 0 \right) \Rightarrow {e^{ - x}}f\left( x \right) > g\left( 0 \right) \Rightarrow \dfrac{{f\left( x \right)}}{{{e^x}}} > 0 \Rightarrow f\left( x \right) > 0\] provided \[x > 0\].

Hence, \[f\left( x \right) > 0\] for all \[x > 0\].

Therefore, option A is correct.

Note- In these types of problems we have to make an assumption in order to get to the results such as in this problem we assumed some other function as the given function multiplied by an exponentially decreasing term.

Let \[g\left( x \right) = {e^{ - x}}f\left( x \right)\]

Differentiating above function with respect to $x$, we get

\[

\Rightarrow \dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ {{e^{ - x}}f\left( x \right)} \right] = {e^{ - x}}\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] + f\left( x \right)\dfrac{d}{{dx}}\left( {{e^{ - x}}} \right) = {e^{ - x}}f'\left( x \right) - {e^{ - x}}f\left( x \right) = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] \\

\Rightarrow g'\left( x \right) = \dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] \\

\]

Given, \[{\text{ }}f'\left( x \right) > f\left( x \right){\text{ }} \Rightarrow f'\left( x \right) - f\left( x \right) > 0\]

As we know that \[{e^{ - x}} > 0\] (always)

\[ \Rightarrow g'\left( x \right) = {e^{ - x}}\left[ {f'\left( x \right) - f\left( x \right)} \right] > 0\]

If the first derivative of any function is greater than zero, then it is an increasing function. From the above statement we can say that \[g\left( x \right)\] is an increasing function.

Now, for \[x > 0\] we can say that the value of the function at \[x\] is greater than the value of the function at 0 i.e., \[g(x) > g\left( 0 \right)\]

As given, \[f\left( 0 \right) = 0 \Rightarrow \]At \[x = 0\], \[g\left( 0 \right) = {e^{ - 0}}f\left( 0 \right) = 0\]

\[ \Rightarrow g(x) > g\left( 0 \right) \Rightarrow {e^{ - x}}f\left( x \right) > g\left( 0 \right) \Rightarrow \dfrac{{f\left( x \right)}}{{{e^x}}} > 0 \Rightarrow f\left( x \right) > 0\] provided \[x > 0\].

Hence, \[f\left( x \right) > 0\] for all \[x > 0\].

Therefore, option A is correct.

Note- In these types of problems we have to make an assumption in order to get to the results such as in this problem we assumed some other function as the given function multiplied by an exponentially decreasing term.

Last updated date: 27th Sep 2023

•

Total views: 365.1k

•

Views today: 8.65k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

How many millions make a billion class 6 maths CBSE

How many crores make 10 million class 7 maths CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE