Let$f(x)=\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\}).{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}.(1-\left\{ x \right\})},$then find the left hand limit and right hand limits, i.e., $\underset{x\to {{0}_{+}}}{\mathop{\lim }}\,f(x)\text{ and }\underset{x\to {{0}_{-}}}{\mathop{\lim }}\,f(x).\text{ }$
(Where$\left\{ x \right\}$ denotes the fractional part of x)
Last updated date: 14th Mar 2023
•
Total views: 306.6k
•
Views today: 2.89k
Answer
306.6k+ views
Hint: Find out right hand and left hand limit separately, using the product rule of limit. Convert Fractional part function to Greatest integer function and solve by substituting \[x\] as \[\left( 0+h \right)\] or \[\left( 0-h \right)\].
As per the question we have to find two limits here, i.e., the left hand limit and right hand limits, i.e.,
$\underset{x\to {{0}_{+}}}{\mathop{\lim }}\,f(x)\text{ and }\underset{x\to {{0}_{-}}}{\mathop{\lim }}\,f(x).\text{ }$
Consider the given expression,
$\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\}).{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}.(1-\left\{ x \right\})}$
Here $\left\{ x \right\}$ denotes the fractional part of x.
We know fractional parts will always be non-negative and fractional parts are greater than or equal to $'0'$ and less than $'1'$ .
As we all know that,
\[x=[x]+\{x\}\]
\[\therefore \{x\}=x-[x]\]
Therefore the given expression can be written as,
\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(x-[x])).{{\cos }^{-1}}(1-(x-[x]))}{\sqrt{2(x-[x])}.(1-(x-[x]))}...........(i)\]
Now we will find the right hand limit of the given function.
As we have to find the limits of positive side we should substitute $'x'$ as (\[0+h\])
And as \[x\to {{0}^{+}},h\to 0\], so the above equation (i) can be written as,
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(0+h-[0+h])).{{\cos }^{-1}}(1-(0+h-[0+h]))}{\sqrt{2(0+h-[0+h])}.(1-(0+h-[0+h]))}\]
As \[h\] is approaching to zero, therefore it can be considered as fraction, \[\left[ 0+h \right]=0\] as the value of greatest integer function is an integer with neglecting the fraction, considering these the above equation can be written as,
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(h-0)).{{\cos }^{-1}}(1-(h-0))}{\sqrt{2(h-0)}.(1-(h-0))} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h).{{\cos }^{-1}}(1-h)}{\sqrt{2h}.(1-h)} \\
\end{align}\]
Now we know the limit of a product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, that is, the above function can be written as,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h)}{(1-h)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}$
Now applying the limits to sine function, we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{{{\sin }^{-1}}(1)}{(1)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}$
Now we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$, so the above equation becomes,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}........(i)$
Now if we apply the limits, we see that
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\dfrac{{{\cos }^{-1}}(1-0)}{\sqrt{2(0)}}=\dfrac{0}{0}$
This is indeterminate form, so we will apply L’ HOSPITAL RULE i.e., differentiating numerator and denominator. So, differentiating numerator and denominator of equation (i) with respect to $h$ , we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( {{\cos }^{-1}}(1-h) \right)}{\dfrac{d}{dh}\left( \sqrt{2h} \right)}$
The differentiation of ${{\cos }^{-1}}x$ is $-\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ , applying this formula, the above equation becomes,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1-h)}^{2}}}}\dfrac{d}{dh}(1-h)}{\sqrt{2}\times \dfrac{1}{2\sqrt{h}}}$
Solving this, we get
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1-h)}^{2}}}}(-1)}{\dfrac{1}{\sqrt{2h}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-{{(1-h)}^{2}}}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-(1+{{h}^{2}}-2h)}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-1-{{h}^{2}}+2h}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{2h}{2h-{{h}^{2}}}} \right] \\
\end{align}\]
Taking out the common term, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{2h}{2h(1-h)}} \right]\]
Cancelling the like term, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{1}{1(1-h)}} \right]\]
Applying the limit, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\left[ \sqrt{\dfrac{1}{1(1-0)}} \right]=\dfrac{\pi }{2}\]
So the right hand limit is $\dfrac{\pi }{2}$ .
Now we will find the left hand limit of the given function.
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\}).{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}.(1-\left\{ x \right\})}$
Now we know the limit of a product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, that is, the above function can be written as,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\})}{(1-\left\{ x \right\})}.\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}}$
Now as $x$ is tending to zero, i.e., $x$ is less than zero, so we will substitute$\left\{ x \right\}=-h$, so as $x\to 0$, therefore $h\to 0$, so the above equation can be written as,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1+h)}{(1+h)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1+h)}{\sqrt{2(-h)}}$
Now we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$, so the above equation becomes,
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1+h)}{\sqrt{2(-h)}}........(ii)\]
Now if we apply the limits, we see that
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{{{\cos }^{-1}}(1+0)}{\sqrt{2(-0)}}=\dfrac{0}{0}$
This is indeterminate form, so we will apply L’ HOSPITAL RULE i.e., differentiating numerator and denominator. So, differentiating numerator and denominator of equation (ii) with respect to $h$ , we get
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( {{\cos }^{-1}}(1+h) \right)}{\dfrac{d}{dh}\left( \sqrt{2(-h)} \right)}\]
The differentiation of ${{\cos }^{-1}}x$ is $-\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ , applying this formula, the above equation becomes,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1+h)}^{2}}}}\dfrac{d}{dh}(1+h)}{\sqrt{-2}\times \dfrac{(1)}{2\sqrt{h}}}$
Solving this, we get
\[\begin{align}
& \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1+h)}^{2}}}}(1)}{\dfrac{(1)}{\sqrt{-2h}}} \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-{{(1+h)}^{2}}}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-(1+{{h}^{2}}+2h)}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-1-{{h}^{2}}-2h}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{-2h}{-2h-{{h}^{2}}}} \right] \\
\end{align}\]
Taking out the common term, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\sqrt{\dfrac{-2h}{-2h(1+h)}} \right]\]
Cancelling the like term, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\sqrt{\dfrac{1}{1(1+h)}} \right]\]
Applying the limit, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\left[ -\sqrt{\dfrac{1}{1(1-0)}} \right]=-\dfrac{\pi }{2}\]
So the left hand limit is $-\dfrac{\pi }{2}$ .
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}\text{ and }\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=-\dfrac{\pi }{2}$
Note: The common mistake is substituting $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}x}{x}=1$, so we get
$\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h)}{(1-h)}.\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}} \\
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=(1).\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}} \\
\end{align}$
In this case we will get a completely different answer.
As per the question we have to find two limits here, i.e., the left hand limit and right hand limits, i.e.,
$\underset{x\to {{0}_{+}}}{\mathop{\lim }}\,f(x)\text{ and }\underset{x\to {{0}_{-}}}{\mathop{\lim }}\,f(x).\text{ }$
Consider the given expression,
$\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\}).{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}.(1-\left\{ x \right\})}$
Here $\left\{ x \right\}$ denotes the fractional part of x.
We know fractional parts will always be non-negative and fractional parts are greater than or equal to $'0'$ and less than $'1'$ .
As we all know that,
\[x=[x]+\{x\}\]
\[\therefore \{x\}=x-[x]\]
Therefore the given expression can be written as,
\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(x-[x])).{{\cos }^{-1}}(1-(x-[x]))}{\sqrt{2(x-[x])}.(1-(x-[x]))}...........(i)\]
Now we will find the right hand limit of the given function.
As we have to find the limits of positive side we should substitute $'x'$ as (\[0+h\])
And as \[x\to {{0}^{+}},h\to 0\], so the above equation (i) can be written as,
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(0+h-[0+h])).{{\cos }^{-1}}(1-(0+h-[0+h]))}{\sqrt{2(0+h-[0+h])}.(1-(0+h-[0+h]))}\]
As \[h\] is approaching to zero, therefore it can be considered as fraction, \[\left[ 0+h \right]=0\] as the value of greatest integer function is an integer with neglecting the fraction, considering these the above equation can be written as,
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-(h-0)).{{\cos }^{-1}}(1-(h-0))}{\sqrt{2(h-0)}.(1-(h-0))} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h).{{\cos }^{-1}}(1-h)}{\sqrt{2h}.(1-h)} \\
\end{align}\]
Now we know the limit of a product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, that is, the above function can be written as,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h)}{(1-h)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}$
Now applying the limits to sine function, we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{{{\sin }^{-1}}(1)}{(1)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}$
Now we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$, so the above equation becomes,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}}........(i)$
Now if we apply the limits, we see that
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\dfrac{{{\cos }^{-1}}(1-0)}{\sqrt{2(0)}}=\dfrac{0}{0}$
This is indeterminate form, so we will apply L’ HOSPITAL RULE i.e., differentiating numerator and denominator. So, differentiating numerator and denominator of equation (i) with respect to $h$ , we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( {{\cos }^{-1}}(1-h) \right)}{\dfrac{d}{dh}\left( \sqrt{2h} \right)}$
The differentiation of ${{\cos }^{-1}}x$ is $-\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ , applying this formula, the above equation becomes,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1-h)}^{2}}}}\dfrac{d}{dh}(1-h)}{\sqrt{2}\times \dfrac{1}{2\sqrt{h}}}$
Solving this, we get
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1-h)}^{2}}}}(-1)}{\dfrac{1}{\sqrt{2h}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-{{(1-h)}^{2}}}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-(1+{{h}^{2}}-2h)}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{1}{\sqrt{1-1-{{h}^{2}}+2h}}\times \sqrt{2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{2h}{2h-{{h}^{2}}}} \right] \\
\end{align}\]
Taking out the common term, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{2h}{2h(1-h)}} \right]\]
Cancelling the like term, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{1}{1(1-h)}} \right]\]
Applying the limit, we get
\[\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\left[ \sqrt{\dfrac{1}{1(1-0)}} \right]=\dfrac{\pi }{2}\]
So the right hand limit is $\dfrac{\pi }{2}$ .
Now we will find the left hand limit of the given function.
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\}).{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}.(1-\left\{ x \right\})}$
Now we know the limit of a product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, that is, the above function can be written as,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-\left\{ x \right\})}{(1-\left\{ x \right\})}.\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-\left\{ x \right\})}{\sqrt{2\left\{ x \right\}}}$
Now as $x$ is tending to zero, i.e., $x$ is less than zero, so we will substitute$\left\{ x \right\}=-h$, so as $x\to 0$, therefore $h\to 0$, so the above equation can be written as,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1+h)}{(1+h)}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1+h)}{\sqrt{2(-h)}}$
Now we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$, so the above equation becomes,
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1+h)}{\sqrt{2(-h)}}........(ii)\]
Now if we apply the limits, we see that
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{{{\cos }^{-1}}(1+0)}{\sqrt{2(-0)}}=\dfrac{0}{0}$
This is indeterminate form, so we will apply L’ HOSPITAL RULE i.e., differentiating numerator and denominator. So, differentiating numerator and denominator of equation (ii) with respect to $h$ , we get
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d}{dh}\left( {{\cos }^{-1}}(1+h) \right)}{\dfrac{d}{dh}\left( \sqrt{2(-h)} \right)}\]
The differentiation of ${{\cos }^{-1}}x$ is $-\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ , applying this formula, the above equation becomes,
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1+h)}^{2}}}}\dfrac{d}{dh}(1+h)}{\sqrt{-2}\times \dfrac{(1)}{2\sqrt{h}}}$
Solving this, we get
\[\begin{align}
& \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{\sqrt{1-{{(1+h)}^{2}}}}(1)}{\dfrac{(1)}{\sqrt{-2h}}} \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-{{(1+h)}^{2}}}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-(1+{{h}^{2}}+2h)}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\dfrac{1}{\sqrt{1-1-{{h}^{2}}-2h}}\times \sqrt{-2h} \right] \\
& \Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ \sqrt{\dfrac{-2h}{-2h-{{h}^{2}}}} \right] \\
\end{align}\]
Taking out the common term, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\sqrt{\dfrac{-2h}{-2h(1+h)}} \right]\]
Cancelling the like term, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\underset{h\to 0}{\mathop{\lim }}\,\left[ -\sqrt{\dfrac{1}{1(1+h)}} \right]\]
Applying the limit, we get
\[\Rightarrow \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}.\left[ -\sqrt{\dfrac{1}{1(1-0)}} \right]=-\dfrac{\pi }{2}\]
So the left hand limit is $-\dfrac{\pi }{2}$ .
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{\pi }{2}\text{ and }\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=-\dfrac{\pi }{2}$
Note: The common mistake is substituting $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}x}{x}=1$, so we get
$\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\sin }^{-1}}(1-h)}{(1-h)}.\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}} \\
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=(1).\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\cos }^{-1}}(1-h)}{\sqrt{2h}} \\
\end{align}$
In this case we will get a completely different answer.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
