
Let $y = y(x)$ be the solution of the differential equation \[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx,\;0 \leqslant x \leqslant \dfrac{\pi }{2},\;y(0) = 0\]. Then, $y\left( {\dfrac{\pi }{3}} \right)$ is equal to
(A) $2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]$
(B) $2{\log _e}\left[ {\dfrac{{(\sqrt 3 + 7)}}{2}} \right]$
(C) $2{\log _e}\left[ {\dfrac{{(3\sqrt 3 - 8)}}{4}} \right]$
(D) $2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 9)}}{6}} \right]$
Answer
232.8k+ views
Hint: To solve this question, we will first expand R.H.S then we will simplify it using the product rule and integrate it. Further, we will use suitable trigonometric identities to get a more simplified equation. Next, we will use differentiation, substitution, completing the square method, and rationalization to get the final answer.
Formula Used:
$(x\;dy - y\;dx = d\;xy)$
$\left[ {\sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$
$\left[ {\cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
$\left[ {\dfrac{1}{{\cos \;x}} = \sec x} \right]$
$\left[ {\dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
$\left[ {{{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
$\left[ {{{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
$\left[ {\int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
$\left[ {\ln \;a + \ln \;b = \ln \;ab} \right]$
Complete step by step Solution:
The given equation is
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx\]
Expanding R.H.S
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = dx + y\sin x(3\sin \,x + \cos \,x + 3)dx\]
Taking everything to L.H.S except $dx$
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy - y\sin x(3\sin \,x + \cos \,x + 3)dx = dx\]
Taking \[(3\sin \,x + \cos \,x + 3)\] as common
$(\cos \,x\;dy - y\;\sin \;x\;dx)(3\sin \;x + \cos \;x + 3) = dx$
Using product rule$,$ i.e.$,$ $(x\;dy - y\;dx = d\;xy)$
$d(y - \cos \;x) = \dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}$ $\left[ {\because \cos \;x\,dy - y\sin \;x\;dx = d(y - \cos \;x)} \right]$
Integrating both sides$,$
$\int {d(y - \cos \;x)} = \int {\dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}} $
Using trigonometric identities$,$
$y\cos \;x = \int {\dfrac{{dx}}{{3\left( {2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right) + \left( {1 - 2{{\sin }^2}\dfrac{x}{2}} \right) + 3}}} $ $\left[ {\because \sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$$,$$\left[ {\because \cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
Solving it$,$
\[y\cos \;x = \int {\dfrac{{dx}}{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2} - 2{{\sin }^2}\dfrac{x}{2} + 4}}} \]
Divide numerator and denominator by ${\cos ^2}\dfrac{x}{2}$
\[y\cos \;x = \int {\dfrac{{\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)dx}}{{\left( {\dfrac{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) - \left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{4}{{{{\cos }^2}\dfrac{x}{2}}}} \right)}}} \]
Solving it further$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4{{\sec }^2}\dfrac{x}{2}}}$ $\left[ {\because \dfrac{1}{{\cos \;x}} = \sec x} \right]$$,$$\left[ {\because \dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
Using trigonometric identity,
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)}}$ $\left[ {\because {{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
Simplifying it$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4 + 4{{\tan }^2}\dfrac{x}{2}}}$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}$
Divide numerator and denominator by 2
\[y\;\cos \;x = \dfrac{{\dfrac{1}{2}{{\sec }^2}\dfrac{x}{2}dx}}{{3\tan \dfrac{x}{2} + {{\tan }^2}\dfrac{x}{2} + 2}}\] …………..equation $(1)$
Let $\tan \dfrac{x}{2} = t$ ………………equation $(2)$
Differentiating both sides$,$
$\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$ ………………equation $(3)$
Substituting equation $(2)$ and $(3)$ in equation $(1),$
$y\;\cos \;x = \int {\dfrac{{dt}}{{3t + {t^2} + 2}}} $
Applying completing the square method in the denominator$,$ i.e.$,$ add and subtract $\dfrac{9}{4}$ $($square of half of the coefficient of t$)$ in the denominator
$y\;\cos \;x = \int {\dfrac{{dt}}{{\left( {3t + {t^2} + \dfrac{9}{4}} \right) - \dfrac{9}{4} + 2}}} $
$y\;\cos \;x = \int {\dfrac{{dt}}{{{{\left( {t + \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{1}{2}} \right)}^2}}}} $ $\left[ {\because {{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
Integrating$,$
$y\;\cos \;x = \dfrac{1}{{2\left( {\dfrac{1}{2}} \right)}}\ln \left| {\dfrac{{\left( {t + \dfrac{3}{2}} \right) - \dfrac{1}{2}}}{{\left( {t + \dfrac{3}{2}} \right) + \dfrac{1}{2}}}} \right| + C$ ………………equation $(4)$ $\left[ {\because \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
Substituting equation $(2)$ in equation $(4)$ and solving it$,$
$y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + C$ ………………equation $(5)$
We are given that $y(0) = 0$
Using it in equation $(5),$
$0 = \ln \left( {\dfrac{1}{2}} \right) + C$
$C = \ln (2)$
Substituting the value of $C$ in equation $(5),$
\[y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + \ln (2)\]
For $x = \dfrac{\pi }{3},$
\[y\;\cos \left( {\dfrac{\pi }{3}} \right) = \ln \left| {\dfrac{{\tan \dfrac{\pi }{6} + 1}}{{\tan \dfrac{\pi }{6} - 2}}} \right| + \ln (2)\]
\[y\;\left( {\dfrac{1}{2}} \right) = \ln \left| {\dfrac{{\dfrac{1}{{\sqrt 3 }} + 1}}{{\dfrac{1}{{\sqrt 3 }} - 2}}} \right| + \ln (2)\]
On simplifying$,$
$y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right) + \ln (2)$
Rationalizing$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left| {\left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right)\left( {\dfrac{{1 + 2\sqrt 3 }}{{1 + 2\sqrt 3 }}} \right)} \right| + \ln (2)\]
Simplifying it further$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{5 + \sqrt 3 }}{{11}}} \right) + \ln (2)\]
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] $\left[ {\because \ln \;a + \ln \;b = \ln \;ab} \right]$
Solving it to get the final answer$,$
\[y = 2\ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] or \[y = 2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]\]
Hence, the correct option is A.
Note: The key concept to solving this type of question is to be very sure and attentive while solving it as it involves a lot of steps like integration, differentiation, rationalization, use of trigonometric identities, completing the square method, and substitution. Also, take proper care while applying the identities.
Formula Used:
$(x\;dy - y\;dx = d\;xy)$
$\left[ {\sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$
$\left[ {\cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
$\left[ {\dfrac{1}{{\cos \;x}} = \sec x} \right]$
$\left[ {\dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
$\left[ {{{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
$\left[ {{{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
$\left[ {\int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
$\left[ {\ln \;a + \ln \;b = \ln \;ab} \right]$
Complete step by step Solution:
The given equation is
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = (1 + y\sin x(3\sin \,x + \cos \,x + 3))dx\]
Expanding R.H.S
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy = dx + y\sin x(3\sin \,x + \cos \,x + 3)dx\]
Taking everything to L.H.S except $dx$
\[\cos \;x(3\sin \;x + \cos \;x + 3)dy - y\sin x(3\sin \,x + \cos \,x + 3)dx = dx\]
Taking \[(3\sin \,x + \cos \,x + 3)\] as common
$(\cos \,x\;dy - y\;\sin \;x\;dx)(3\sin \;x + \cos \;x + 3) = dx$
Using product rule$,$ i.e.$,$ $(x\;dy - y\;dx = d\;xy)$
$d(y - \cos \;x) = \dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}$ $\left[ {\because \cos \;x\,dy - y\sin \;x\;dx = d(y - \cos \;x)} \right]$
Integrating both sides$,$
$\int {d(y - \cos \;x)} = \int {\dfrac{{dx}}{{3\sin \;x + \cos \;x + 3}}} $
Using trigonometric identities$,$
$y\cos \;x = \int {\dfrac{{dx}}{{3\left( {2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right) + \left( {1 - 2{{\sin }^2}\dfrac{x}{2}} \right) + 3}}} $ $\left[ {\because \sin \;x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$$,$$\left[ {\because \cos \;x = 1 - 2{{\sin }^2}\dfrac{x}{2}} \right]$
Solving it$,$
\[y\cos \;x = \int {\dfrac{{dx}}{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2} - 2{{\sin }^2}\dfrac{x}{2} + 4}}} \]
Divide numerator and denominator by ${\cos ^2}\dfrac{x}{2}$
\[y\cos \;x = \int {\dfrac{{\left( {\dfrac{1}{{{{\cos }^2}\dfrac{x}{2}}}} \right)dx}}{{\left( {\dfrac{{6\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) - \left( {\dfrac{{2{{\sin }^2}\dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2}}}} \right) + \left( {\dfrac{4}{{{{\cos }^2}\dfrac{x}{2}}}} \right)}}} \]
Solving it further$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4{{\sec }^2}\dfrac{x}{2}}}$ $\left[ {\because \dfrac{1}{{\cos \;x}} = \sec x} \right]$$,$$\left[ {\because \dfrac{{\sin x}}{{\cos \;x}} = \tan \;x} \right]$
Using trigonometric identity,
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4\left( {1 + {{\tan }^2}\dfrac{x}{2}} \right)}}$ $\left[ {\because {{\sec }^2}x = 1 + {{\tan }^2}x} \right]$
Simplifying it$,$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} - 2{{\tan }^2}\dfrac{x}{2} + 4 + 4{{\tan }^2}\dfrac{x}{2}}}$
$y\;\cos \;x = \dfrac{{{{\sec }^2}\dfrac{x}{2}dx}}{{6\tan \dfrac{x}{2} + 2{{\tan }^2}\dfrac{x}{2} + 4}}$
Divide numerator and denominator by 2
\[y\;\cos \;x = \dfrac{{\dfrac{1}{2}{{\sec }^2}\dfrac{x}{2}dx}}{{3\tan \dfrac{x}{2} + {{\tan }^2}\dfrac{x}{2} + 2}}\] …………..equation $(1)$
Let $\tan \dfrac{x}{2} = t$ ………………equation $(2)$
Differentiating both sides$,$
$\dfrac{1}{2}{\sec ^2}\dfrac{x}{2}dx = dt$ ………………equation $(3)$
Substituting equation $(2)$ and $(3)$ in equation $(1),$
$y\;\cos \;x = \int {\dfrac{{dt}}{{3t + {t^2} + 2}}} $
Applying completing the square method in the denominator$,$ i.e.$,$ add and subtract $\dfrac{9}{4}$ $($square of half of the coefficient of t$)$ in the denominator
$y\;\cos \;x = \int {\dfrac{{dt}}{{\left( {3t + {t^2} + \dfrac{9}{4}} \right) - \dfrac{9}{4} + 2}}} $
$y\;\cos \;x = \int {\dfrac{{dt}}{{{{\left( {t + \dfrac{3}{2}} \right)}^2} - {{\left( {\dfrac{1}{2}} \right)}^2}}}} $ $\left[ {\because {{(a + b)}^2} = {a^2} + {b^2} + 2ab} \right]$
Integrating$,$
$y\;\cos \;x = \dfrac{1}{{2\left( {\dfrac{1}{2}} \right)}}\ln \left| {\dfrac{{\left( {t + \dfrac{3}{2}} \right) - \dfrac{1}{2}}}{{\left( {t + \dfrac{3}{2}} \right) + \dfrac{1}{2}}}} \right| + C$ ………………equation $(4)$ $\left[ {\because \int {\dfrac{{dx}}{{{x^2} - {a^2}}} = \dfrac{1}{{2a}}\ln \left| {\dfrac{{x - a}}{{x + a}}} \right|} } \right]$
Substituting equation $(2)$ in equation $(4)$ and solving it$,$
$y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + C$ ………………equation $(5)$
We are given that $y(0) = 0$
Using it in equation $(5),$
$0 = \ln \left( {\dfrac{1}{2}} \right) + C$
$C = \ln (2)$
Substituting the value of $C$ in equation $(5),$
\[y\;\cos \;x = \ln \left| {\dfrac{{\tan \dfrac{x}{2} + 1}}{{\tan \dfrac{x}{2} - 2}}} \right| + \ln (2)\]
For $x = \dfrac{\pi }{3},$
\[y\;\cos \left( {\dfrac{\pi }{3}} \right) = \ln \left| {\dfrac{{\tan \dfrac{\pi }{6} + 1}}{{\tan \dfrac{\pi }{6} - 2}}} \right| + \ln (2)\]
\[y\;\left( {\dfrac{1}{2}} \right) = \ln \left| {\dfrac{{\dfrac{1}{{\sqrt 3 }} + 1}}{{\dfrac{1}{{\sqrt 3 }} - 2}}} \right| + \ln (2)\]
On simplifying$,$
$y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right) + \ln (2)$
Rationalizing$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left| {\left( {\dfrac{{1 + \sqrt 3 }}{{1 - 2\sqrt 3 }}} \right)\left( {\dfrac{{1 + 2\sqrt 3 }}{{1 + 2\sqrt 3 }}} \right)} \right| + \ln (2)\]
Simplifying it further$,$
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{5 + \sqrt 3 }}{{11}}} \right) + \ln (2)\]
\[y\left( {\dfrac{1}{2}} \right) = \ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] $\left[ {\because \ln \;a + \ln \;b = \ln \;ab} \right]$
Solving it to get the final answer$,$
\[y = 2\ln \left( {\dfrac{{10 + 2\sqrt 3 }}{{11}}} \right)\] or \[y = 2{\log _e}\left[ {\dfrac{{(2\sqrt 3 + 10)}}{{11}}} \right]\]
Hence, the correct option is A.
Note: The key concept to solving this type of question is to be very sure and attentive while solving it as it involves a lot of steps like integration, differentiation, rationalization, use of trigonometric identities, completing the square method, and substitution. Also, take proper care while applying the identities.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

