Answer
Verified
423.9k+ views
Hint: Since the vector $\vec{a}$ is given to be perpendicular to both of the unit vectors $\vec{b}$ and $\vec{c}$, so it will also be perpendicular to the plane containing the vectors $\vec{b}$ and $\vec{c}$. This means that the vector $\vec{a}$ must be parallel to the vector $\vec{b}\times \vec{c}$ . So the vector $\vec{b}\times \vec{c}$ can be written as a scalar multiple of the vector $\vec{a}$. Further, the magnitude of the cross product $\vec{b}\times \vec{c}$ is given by $\left| \vec{b}\times \vec{c} \right|=\left| {\vec{b}} \right|\left| {\vec{c}} \right|\sin \alpha $. Equating this magnitude with the scalar multiplied by the magnitude of $\vec{a}$, we will get the value of the scalar.
Complete step-by-step solution:
According to the question, the vector $\vec{a}$ is perpendicular to the unit vectors $\vec{b}$ and $\vec{c}$. This means that it will also be perpendicular to the plane containing the vectors $\vec{b}$ and $\vec{c}$. Now, we know that the cross product of two vectors is perpendicular to the plane containing the two vectors. So we can say that the vector $\vec{a}$ is parallel to the vector $\vec{b}\times \vec{c}$. So we can write
$\Rightarrow \vec{b}\times \vec{c}=k\vec{a}.......(i)$
Taking the magnitudes of the vectors on both the sides, we get
\[\Rightarrow \left| \vec{b}\times \vec{c} \right|=\left| k\vec{a} \right|\]
Now, since the angle between the vectors $\vec{b}$ and $\vec{c}$ is given to be equal to $\alpha $, so we can write
$\Rightarrow \left| \vec{b}\times \vec{c} \right|=\left| {\vec{b}} \right|\left| {\vec{c}} \right|\sin \alpha $
Equating the above two equations, we get
\[\begin{align}
& \Rightarrow \left| k\vec{a} \right|=\left| {\vec{b}} \right|\left| {\vec{c}} \right|\sin \alpha \\
& \Rightarrow k\left| {\vec{a}} \right|=\left| {\vec{b}} \right|\left| {\vec{c}} \right|\sin \alpha \\
\end{align}\]
Since the vectors $\vec{b}$ and $\vec{c}$ are given to be unit vectors, so their magnitudes are equal to one. So we substitute $\left| {\vec{b}} \right|=1$ and $\left| {\vec{c}} \right|=1$ in the above equation to get
\[\begin{align}
& \Rightarrow \left| k \right|\left| {\vec{a}} \right|=\left( 1 \right)\left( 1 \right)\sin \alpha \\
& \Rightarrow \left| k \right|\left| {\vec{a}} \right|=\sin \alpha \\
& \Rightarrow \left| k \right|=\sin \alpha \\
& \Rightarrow k=\pm \sin \alpha \\
\end{align}\]
Substituting this value in (i) we get
$\Rightarrow \vec{b}\times \vec{c}=\pm \left( \sin \alpha \right)\vec{a}$
Hence, the correct answer is option (c).
Note: In this question, we were not given any information regarding the magnitude of the vector $\vec{a}$. So we simply assumed its magnitude to be equal to one. In other words, we assumed the vector $\vec{a}$ as a unit vector.
Complete step-by-step solution:
According to the question, the vector $\vec{a}$ is perpendicular to the unit vectors $\vec{b}$ and $\vec{c}$. This means that it will also be perpendicular to the plane containing the vectors $\vec{b}$ and $\vec{c}$. Now, we know that the cross product of two vectors is perpendicular to the plane containing the two vectors. So we can say that the vector $\vec{a}$ is parallel to the vector $\vec{b}\times \vec{c}$. So we can write
$\Rightarrow \vec{b}\times \vec{c}=k\vec{a}.......(i)$
Taking the magnitudes of the vectors on both the sides, we get
\[\Rightarrow \left| \vec{b}\times \vec{c} \right|=\left| k\vec{a} \right|\]
Now, since the angle between the vectors $\vec{b}$ and $\vec{c}$ is given to be equal to $\alpha $, so we can write
$\Rightarrow \left| \vec{b}\times \vec{c} \right|=\left| {\vec{b}} \right|\left| {\vec{c}} \right|\sin \alpha $
Equating the above two equations, we get
\[\begin{align}
& \Rightarrow \left| k\vec{a} \right|=\left| {\vec{b}} \right|\left| {\vec{c}} \right|\sin \alpha \\
& \Rightarrow k\left| {\vec{a}} \right|=\left| {\vec{b}} \right|\left| {\vec{c}} \right|\sin \alpha \\
\end{align}\]
Since the vectors $\vec{b}$ and $\vec{c}$ are given to be unit vectors, so their magnitudes are equal to one. So we substitute $\left| {\vec{b}} \right|=1$ and $\left| {\vec{c}} \right|=1$ in the above equation to get
\[\begin{align}
& \Rightarrow \left| k \right|\left| {\vec{a}} \right|=\left( 1 \right)\left( 1 \right)\sin \alpha \\
& \Rightarrow \left| k \right|\left| {\vec{a}} \right|=\sin \alpha \\
& \Rightarrow \left| k \right|=\sin \alpha \\
& \Rightarrow k=\pm \sin \alpha \\
\end{align}\]
Substituting this value in (i) we get
$\Rightarrow \vec{b}\times \vec{c}=\pm \left( \sin \alpha \right)\vec{a}$
Hence, the correct answer is option (c).
Note: In this question, we were not given any information regarding the magnitude of the vector $\vec{a}$. So we simply assumed its magnitude to be equal to one. In other words, we assumed the vector $\vec{a}$ as a unit vector.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths