
Let two matrices A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$ are two matrices such that they are commutative and c$ \ne $3b. Then, find the value of $\dfrac{{d - a}}{{3b - c}}$.
Answer
595.5k+ views
Hint: In order to solve this problem we will use the property commutative, since it is provided that the two matrices are commutative using this data and then equating the two obtained matrices after multiplication and solving to get the asked term you will reach the right answer.
Complete step-by-step answer:
We have A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$.
It's given that A and B are commutative.
It means AB = BA ……(1)
First we calculate AB.
So, AB = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$=$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$
Then we find BA.
So, BA =$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$$\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ = \[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
From (1) we can equate the value of AB and BA.
So, AB = BA
$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$=\[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
Now we can say, a+2c = a+3b
2c = 3b
So, c = $\dfrac{{{\text{3b}}}}{2}$ ……(2)
And also, b + 2d = 2a + 4b
2d – 2a = 3b
d - a = $\dfrac{{{\text{3b}}}}{{\text{2}}}$ ……(3)
Therefore, we can do $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{{\text{3b - }}\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$ = 1.
Hence, the value of $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= 1.
Note: Whenever you face such types of problems you have to use the properties of matrix. The properties used here is multiplication of matrices and addition of matrices. Then we have just solved the asked term by equating the matrix as it is given that the matrix is commutative. Doing this will give you the right answer.
Complete step-by-step answer:
We have A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$.
It's given that A and B are commutative.
It means AB = BA ……(1)
First we calculate AB.
So, AB = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$=$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$
Then we find BA.
So, BA =$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$$\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ = \[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
From (1) we can equate the value of AB and BA.
So, AB = BA
$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$=\[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
Now we can say, a+2c = a+3b
2c = 3b
So, c = $\dfrac{{{\text{3b}}}}{2}$ ……(2)
And also, b + 2d = 2a + 4b
2d – 2a = 3b
d - a = $\dfrac{{{\text{3b}}}}{{\text{2}}}$ ……(3)
Therefore, we can do $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{{\text{3b - }}\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$ = 1.
Hence, the value of $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= 1.
Note: Whenever you face such types of problems you have to use the properties of matrix. The properties used here is multiplication of matrices and addition of matrices. Then we have just solved the asked term by equating the matrix as it is given that the matrix is commutative. Doing this will give you the right answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What happens if Mutations are not corrected class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

