
Let two matrices A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$ are two matrices such that they are commutative and c$ \ne $3b. Then, find the value of $\dfrac{{d - a}}{{3b - c}}$.
Answer
605.7k+ views
Hint: In order to solve this problem we will use the property commutative, since it is provided that the two matrices are commutative using this data and then equating the two obtained matrices after multiplication and solving to get the asked term you will reach the right answer.
Complete step-by-step answer:
We have A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$.
It's given that A and B are commutative.
It means AB = BA ……(1)
First we calculate AB.
So, AB = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$=$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$
Then we find BA.
So, BA =$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$$\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ = \[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
From (1) we can equate the value of AB and BA.
So, AB = BA
$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$=\[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
Now we can say, a+2c = a+3b
2c = 3b
So, c = $\dfrac{{{\text{3b}}}}{2}$ ……(2)
And also, b + 2d = 2a + 4b
2d – 2a = 3b
d - a = $\dfrac{{{\text{3b}}}}{{\text{2}}}$ ……(3)
Therefore, we can do $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{{\text{3b - }}\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$ = 1.
Hence, the value of $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= 1.
Note: Whenever you face such types of problems you have to use the properties of matrix. The properties used here is multiplication of matrices and addition of matrices. Then we have just solved the asked term by equating the matrix as it is given that the matrix is commutative. Doing this will give you the right answer.
Complete step-by-step answer:
We have A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$.
It's given that A and B are commutative.
It means AB = BA ……(1)
First we calculate AB.
So, AB = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$=$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$
Then we find BA.
So, BA =$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$$\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ = \[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
From (1) we can equate the value of AB and BA.
So, AB = BA
$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$=\[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
Now we can say, a+2c = a+3b
2c = 3b
So, c = $\dfrac{{{\text{3b}}}}{2}$ ……(2)
And also, b + 2d = 2a + 4b
2d – 2a = 3b
d - a = $\dfrac{{{\text{3b}}}}{{\text{2}}}$ ……(3)
Therefore, we can do $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{{\text{3b - }}\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$ = 1.
Hence, the value of $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= 1.
Note: Whenever you face such types of problems you have to use the properties of matrix. The properties used here is multiplication of matrices and addition of matrices. Then we have just solved the asked term by equating the matrix as it is given that the matrix is commutative. Doing this will give you the right answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

