
Let two matrices A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$ are two matrices such that they are commutative and c$ \ne $3b. Then, find the value of $\dfrac{{d - a}}{{3b - c}}$.
Answer
511.5k+ views
Hint: In order to solve this problem we will use the property commutative, since it is provided that the two matrices are commutative using this data and then equating the two obtained matrices after multiplication and solving to get the asked term you will reach the right answer.
Complete step-by-step answer:
We have A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$.
It's given that A and B are commutative.
It means AB = BA ……(1)
First we calculate AB.
So, AB = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$=$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$
Then we find BA.
So, BA =$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$$\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ = \[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
From (1) we can equate the value of AB and BA.
So, AB = BA
$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$=\[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
Now we can say, a+2c = a+3b
2c = 3b
So, c = $\dfrac{{{\text{3b}}}}{2}$ ……(2)
And also, b + 2d = 2a + 4b
2d – 2a = 3b
d - a = $\dfrac{{{\text{3b}}}}{{\text{2}}}$ ……(3)
Therefore, we can do $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{{\text{3b - }}\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$ = 1.
Hence, the value of $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= 1.
Note: Whenever you face such types of problems you have to use the properties of matrix. The properties used here is multiplication of matrices and addition of matrices. Then we have just solved the asked term by equating the matrix as it is given that the matrix is commutative. Doing this will give you the right answer.
Complete step-by-step answer:
We have A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$.
It's given that A and B are commutative.
It means AB = BA ……(1)
First we calculate AB.
So, AB = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$=$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$
Then we find BA.
So, BA =$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$$\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ = \[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
From (1) we can equate the value of AB and BA.
So, AB = BA
$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$=\[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
Now we can say, a+2c = a+3b
2c = 3b
So, c = $\dfrac{{{\text{3b}}}}{2}$ ……(2)
And also, b + 2d = 2a + 4b
2d – 2a = 3b
d - a = $\dfrac{{{\text{3b}}}}{{\text{2}}}$ ……(3)
Therefore, we can do $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{{\text{3b - }}\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$ = 1.
Hence, the value of $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= 1.
Note: Whenever you face such types of problems you have to use the properties of matrix. The properties used here is multiplication of matrices and addition of matrices. Then we have just solved the asked term by equating the matrix as it is given that the matrix is commutative. Doing this will give you the right answer.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What are the major means of transport Explain each class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
