Answer
Verified
474.3k+ views
Hint: In order to solve this problem we will use the property commutative, since it is provided that the two matrices are commutative using this data and then equating the two obtained matrices after multiplication and solving to get the asked term you will reach the right answer.
Complete step-by-step answer:
We have A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$.
It's given that A and B are commutative.
It means AB = BA ……(1)
First we calculate AB.
So, AB = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$=$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$
Then we find BA.
So, BA =$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$$\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ = \[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
From (1) we can equate the value of AB and BA.
So, AB = BA
$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$=\[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
Now we can say, a+2c = a+3b
2c = 3b
So, c = $\dfrac{{{\text{3b}}}}{2}$ ……(2)
And also, b + 2d = 2a + 4b
2d – 2a = 3b
d - a = $\dfrac{{{\text{3b}}}}{{\text{2}}}$ ……(3)
Therefore, we can do $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{{\text{3b - }}\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$ = 1.
Hence, the value of $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= 1.
Note: Whenever you face such types of problems you have to use the properties of matrix. The properties used here is multiplication of matrices and addition of matrices. Then we have just solved the asked term by equating the matrix as it is given that the matrix is commutative. Doing this will give you the right answer.
Complete step-by-step answer:
We have A = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$and B = $\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$.
It's given that A and B are commutative.
It means AB = BA ……(1)
First we calculate AB.
So, AB = $\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$=$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$
Then we find BA.
So, BA =$\left[ \begin{gathered}
{\text{a}}\,\,\,\,{\text{b}} \\
{\text{c}}\,\,\,\,{\text{d}} \\
\end{gathered} \right]$$\left[ \begin{gathered}
1\,\,\,\,2 \\
3\,\,\,\,4 \\
\end{gathered} \right]$ = \[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
From (1) we can equate the value of AB and BA.
So, AB = BA
$\left[ \begin{gathered}
{\text{a + 2c}}\,\,\,\,\,\,\,\,{\text{b + 2d}} \\
{\text{3a + 4c}}\,\,\,\,\,\,\,\,{\text{3b + 4d}} \\
\end{gathered} \right]$=\[\left[ \begin{gathered}
{\text{a + 3b}}\,\,\,\,{\text{2a + 4b}} \\
{\text{c + 3d}}\,\,\,\,{\text{2c + 4d}} \\
\end{gathered} \right]\]
Now we can say, a+2c = a+3b
2c = 3b
So, c = $\dfrac{{{\text{3b}}}}{2}$ ……(2)
And also, b + 2d = 2a + 4b
2d – 2a = 3b
d - a = $\dfrac{{{\text{3b}}}}{{\text{2}}}$ ……(3)
Therefore, we can do $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{{\text{3b - }}\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$= $\dfrac{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}{{\dfrac{{\text{3}}}{{\text{2}}}{\text{b}}}}$ = 1.
Hence, the value of $\dfrac{{{\text{d - a}}}}{{{\text{3b - c}}}}$= 1.
Note: Whenever you face such types of problems you have to use the properties of matrix. The properties used here is multiplication of matrices and addition of matrices. Then we have just solved the asked term by equating the matrix as it is given that the matrix is commutative. Doing this will give you the right answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE