Answer
Verified
417.9k+ views
Hint: First of all this a simple problem, though it may seem to be complex. In order to solve the problem, we need to have some knowledge regarding a few topics about circles. Such as the basic general equation form of a circle, tangent equation of a circle. When given the equation of a circle, we should be able to recognize the coordinates of the center and the radius of the circle.
Complete answer:
The general equation form of a circle is given by ${x^2} + {y^2} = {r^2}$, where the center of the circle is the origin and it has a radius of r units.
Visualizing the given information inform in a figure, as given below:
Given that the circle is of a radius of 1 unit, from ${x^2} + {y^2} = 1$, from here it is clear that the radius of the circle is 1 unit.
Gathering from the given information, P is a point on the tangent of the circle.
The tangents drawn from these points S and P meet at Q, which is a point on the same vertical line as the point S, which means that the x-coordinate remains the same for the point Q, which is 1.
The x-coordinate for Q is 1, and let the y-coordinate be a variable b.
So the coordinates of the point are \[Q{\text{ }} = \left( {1,b} \right)\]
A normal of the circle or the tangent passes through its center, hence here the normal to the circle through the point P, intersects a line drawn through Q parallel to RS at point E.
Now the line parallel to RS which is the line QE, as it passes through the point Q and parallel to RS, which means that Q and E are on the same horizontal line, which means that the points Q and E have the same y-coordinate which is b.
Let us consider the coordinates of the point P to be $\left( {\cos \theta ,\sin \theta } \right)$, as P is the point on the circle it should satisfy the circle equation which is ${x^2} + {y^2} = 1$, so x-coordinate to be $\cos \theta $and y-coordinate to be $\sin \theta $satisfies the equation${x^2} + {y^2} = 1$.
$ \Rightarrow {\cos ^2}\theta + {\sin ^2}\theta = 1$
Now as this normal line OP passes through the origin and the point $P(\cos \theta ,\sin \theta )$.
Hence the equation of any line which passes through the origin is given by $y = mx$
Here m is the slope of the line OP, which is given by the ratio of difference of y coordinates to the difference of x coordinates of \[O\left( {0,0} \right)\] and $P(\cos \theta ,\sin \theta )$, as given below:
$ \Rightarrow m = \dfrac{{\sin \theta - 0}}{{\cos \theta - 0}}$
$ \Rightarrow m = \tan \theta $
Hence the equation of the line OP is given by:
$ \Rightarrow y = \left( {\tan \theta } \right)x$
This line OP also passes through the point E, hence this point should satisfy the equation $y = \left( {\tan \theta } \right)x$.
We only the y-coordinate of the point E which is b, so by substituting the y-coordinate in the equation$y = \left( {\tan \theta } \right)x$, gives:
$ \Rightarrow b = \left( {\tan \theta } \right)x$
$ \Rightarrow \dfrac{b}{{\tan \theta }} = x$, is the x-coordinate of the point E
$\therefore $The coordinates of the point E are $\left( {\dfrac{b}{{\tan \theta }},b} \right)$.
We know that the tangent equation of the circle is given by:
$ \Rightarrow x{x_1} + y{y_1} = {r^2}$
Where r is the radius of the circle and $\left( {{x_1},{y_1}} \right)$are the coordinates of the point on the circle and the tangent of the circle, which is P here, as given below:
$ \Rightarrow \left( {{x_1},{y_1}} \right) = \left( {\cos \theta ,\sin \theta } \right)$
Hence the tangent equation becomes:
$ \Rightarrow x\cos \theta + y\sin \theta = 1$
This tangent meets the point \[Q{\text{ }}\left( {1,b} \right)\], therefore this point should satisfy the tangent equation as given below:
$ \Rightarrow 1\left( {\cos \theta } \right) + b\left( {\sin \theta } \right) = 1$
$ \Rightarrow \cos \theta + b\sin \theta = 1$
On expanding $\cos \theta $ and $\sin \theta $, as given below:
$ \Rightarrow \left( {1 - 2{{\sin }^2}\dfrac{\theta }{2}} \right) + b\left( {2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right) = 1$
$ \Rightarrow 1 - 2{\sin ^2}\dfrac{\theta }{2} + 2b\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 1$
As 1 gets cancelled on both sides, as given below:
\[ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2b\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\]
The above expression is obtained after $2\sin \dfrac{\theta }{2}$ gets cancelled on both sides.
\[ \Rightarrow \sin \dfrac{\theta }{2} = b\cos \dfrac{\theta }{2}\]
\[ \Rightarrow \dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}} = b\]
$\therefore b = \tan \dfrac{\theta }{2}$
Now substituting the value of b in the point $E\left( {\dfrac{b}{{\tan \theta }},b} \right)$
The x-coordinate of E is $\dfrac{b}{{\tan \theta }} = \dfrac{{\tan \dfrac{\theta }{2}}}{{\tan \theta }}$,
The y-coordinate of E is $b = \tan \dfrac{\theta }{2}$
Expanding the x-coordinate, as given below:
\[ \Rightarrow \dfrac{{\tan \dfrac{\theta }{2}}}{{\tan \theta }} = \dfrac{{\tan \dfrac{\theta }{2}}}{{\dfrac{{2\tan \dfrac{\theta }{2}}}{{1 - {{\tan }^2}\dfrac{\theta }{2}}}}}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{\theta }{2}}}{{\tan \theta }} = \dfrac{1}{2}\left( {1 - {{\tan }^2}\dfrac{\theta }{2}} \right)\]
$\therefore x = \dfrac{1}{2}\left( {1 - {{\tan }^2}\dfrac{\theta }{2}} \right)$
And $y = \tan \dfrac{\theta }{2}$
Hence the locus of the point E is ${y^2} + 2x = 1$
We can verify this by substitution as given below:
\[ \Rightarrow {y^2} + 2x = {\left( {\tan \dfrac{\theta }{2}} \right)^2} + 2\left( {\dfrac{1}{2}\left( {1 - {{\tan }^2}\dfrac{\theta }{2}} \right)} \right)\]
\[ \Rightarrow {y^2} + 2x = {\tan ^2}\dfrac{\theta }{2} + 1 - {\tan ^2}\dfrac{\theta }{2}\]
\[ \Rightarrow {y^2} + 2x = 1\]
\[\therefore {y^2} + 2x = 1\] is the locus of the point E.
Hence the locus of the point E passes only through $\left( {\dfrac{1}{3},\dfrac{1}{{\sqrt 3 }}} \right)$ and $\left( {\dfrac{1}{3},\dfrac{{ - 1}}{{\sqrt 3 }}} \right)$
Note:
There is one important thing which we have to understand is that we know that the general equation of a circle is given by ${x^2} + {y^2} = 1$, where the circle center is (0,0) and the radius of the circle is 1 unit. Whereas if given the circle equation as ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}$, then the center of the circle is (a,b) and the radius of the circle is r units. Also the trigonometric formulas were used like $\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2}$ and $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$, which are very important to remember.
Complete answer:
The general equation form of a circle is given by ${x^2} + {y^2} = {r^2}$, where the center of the circle is the origin and it has a radius of r units.
Visualizing the given information inform in a figure, as given below:
Given that the circle is of a radius of 1 unit, from ${x^2} + {y^2} = 1$, from here it is clear that the radius of the circle is 1 unit.
Gathering from the given information, P is a point on the tangent of the circle.
The tangents drawn from these points S and P meet at Q, which is a point on the same vertical line as the point S, which means that the x-coordinate remains the same for the point Q, which is 1.
The x-coordinate for Q is 1, and let the y-coordinate be a variable b.
So the coordinates of the point are \[Q{\text{ }} = \left( {1,b} \right)\]
A normal of the circle or the tangent passes through its center, hence here the normal to the circle through the point P, intersects a line drawn through Q parallel to RS at point E.
Now the line parallel to RS which is the line QE, as it passes through the point Q and parallel to RS, which means that Q and E are on the same horizontal line, which means that the points Q and E have the same y-coordinate which is b.
Let us consider the coordinates of the point P to be $\left( {\cos \theta ,\sin \theta } \right)$, as P is the point on the circle it should satisfy the circle equation which is ${x^2} + {y^2} = 1$, so x-coordinate to be $\cos \theta $and y-coordinate to be $\sin \theta $satisfies the equation${x^2} + {y^2} = 1$.
$ \Rightarrow {\cos ^2}\theta + {\sin ^2}\theta = 1$
Now as this normal line OP passes through the origin and the point $P(\cos \theta ,\sin \theta )$.
Hence the equation of any line which passes through the origin is given by $y = mx$
Here m is the slope of the line OP, which is given by the ratio of difference of y coordinates to the difference of x coordinates of \[O\left( {0,0} \right)\] and $P(\cos \theta ,\sin \theta )$, as given below:
$ \Rightarrow m = \dfrac{{\sin \theta - 0}}{{\cos \theta - 0}}$
$ \Rightarrow m = \tan \theta $
Hence the equation of the line OP is given by:
$ \Rightarrow y = \left( {\tan \theta } \right)x$
This line OP also passes through the point E, hence this point should satisfy the equation $y = \left( {\tan \theta } \right)x$.
We only the y-coordinate of the point E which is b, so by substituting the y-coordinate in the equation$y = \left( {\tan \theta } \right)x$, gives:
$ \Rightarrow b = \left( {\tan \theta } \right)x$
$ \Rightarrow \dfrac{b}{{\tan \theta }} = x$, is the x-coordinate of the point E
$\therefore $The coordinates of the point E are $\left( {\dfrac{b}{{\tan \theta }},b} \right)$.
We know that the tangent equation of the circle is given by:
$ \Rightarrow x{x_1} + y{y_1} = {r^2}$
Where r is the radius of the circle and $\left( {{x_1},{y_1}} \right)$are the coordinates of the point on the circle and the tangent of the circle, which is P here, as given below:
$ \Rightarrow \left( {{x_1},{y_1}} \right) = \left( {\cos \theta ,\sin \theta } \right)$
Hence the tangent equation becomes:
$ \Rightarrow x\cos \theta + y\sin \theta = 1$
This tangent meets the point \[Q{\text{ }}\left( {1,b} \right)\], therefore this point should satisfy the tangent equation as given below:
$ \Rightarrow 1\left( {\cos \theta } \right) + b\left( {\sin \theta } \right) = 1$
$ \Rightarrow \cos \theta + b\sin \theta = 1$
On expanding $\cos \theta $ and $\sin \theta $, as given below:
$ \Rightarrow \left( {1 - 2{{\sin }^2}\dfrac{\theta }{2}} \right) + b\left( {2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right) = 1$
$ \Rightarrow 1 - 2{\sin ^2}\dfrac{\theta }{2} + 2b\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} = 1$
As 1 gets cancelled on both sides, as given below:
\[ \Rightarrow 2{\sin ^2}\dfrac{\theta }{2} = 2b\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\]
The above expression is obtained after $2\sin \dfrac{\theta }{2}$ gets cancelled on both sides.
\[ \Rightarrow \sin \dfrac{\theta }{2} = b\cos \dfrac{\theta }{2}\]
\[ \Rightarrow \dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}} = b\]
$\therefore b = \tan \dfrac{\theta }{2}$
Now substituting the value of b in the point $E\left( {\dfrac{b}{{\tan \theta }},b} \right)$
The x-coordinate of E is $\dfrac{b}{{\tan \theta }} = \dfrac{{\tan \dfrac{\theta }{2}}}{{\tan \theta }}$,
The y-coordinate of E is $b = \tan \dfrac{\theta }{2}$
Expanding the x-coordinate, as given below:
\[ \Rightarrow \dfrac{{\tan \dfrac{\theta }{2}}}{{\tan \theta }} = \dfrac{{\tan \dfrac{\theta }{2}}}{{\dfrac{{2\tan \dfrac{\theta }{2}}}{{1 - {{\tan }^2}\dfrac{\theta }{2}}}}}\]
\[ \Rightarrow \dfrac{{\tan \dfrac{\theta }{2}}}{{\tan \theta }} = \dfrac{1}{2}\left( {1 - {{\tan }^2}\dfrac{\theta }{2}} \right)\]
$\therefore x = \dfrac{1}{2}\left( {1 - {{\tan }^2}\dfrac{\theta }{2}} \right)$
And $y = \tan \dfrac{\theta }{2}$
Hence the locus of the point E is ${y^2} + 2x = 1$
We can verify this by substitution as given below:
\[ \Rightarrow {y^2} + 2x = {\left( {\tan \dfrac{\theta }{2}} \right)^2} + 2\left( {\dfrac{1}{2}\left( {1 - {{\tan }^2}\dfrac{\theta }{2}} \right)} \right)\]
\[ \Rightarrow {y^2} + 2x = {\tan ^2}\dfrac{\theta }{2} + 1 - {\tan ^2}\dfrac{\theta }{2}\]
\[ \Rightarrow {y^2} + 2x = 1\]
\[\therefore {y^2} + 2x = 1\] is the locus of the point E.
Hence the locus of the point E passes only through $\left( {\dfrac{1}{3},\dfrac{1}{{\sqrt 3 }}} \right)$ and $\left( {\dfrac{1}{3},\dfrac{{ - 1}}{{\sqrt 3 }}} \right)$
Note:
There is one important thing which we have to understand is that we know that the general equation of a circle is given by ${x^2} + {y^2} = 1$, where the circle center is (0,0) and the radius of the circle is 1 unit. Whereas if given the circle equation as ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {r^2}$, then the center of the circle is (a,b) and the radius of the circle is r units. Also the trigonometric formulas were used like $\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2}$ and $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$, which are very important to remember.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE