Let $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $be three unit vectors such that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$. If $\overrightarrow b $ is not parallel to $\overrightarrow c $, then the angle between $\overrightarrow a $ and $\overrightarrow b $ is:
A) $\dfrac{{3\pi }}{4}$
B) $\dfrac{\pi }{2}$
C) $\dfrac{{2\pi }}{3}$
D) $\dfrac{{5\pi }}{6}$
Answer
Verified
475.5k+ views
Hint:We are given that $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $be three unit vectors, so, $|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1$. And we know that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $. This is the theorem. So on further comparing this equation, you will get the answer.
Complete step-by-step answer:
So, according to the question, we are given that $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $be three unit vectors such that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$.
So from this statement, it is clear that the magnitude of $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are equal to $1$.
$|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1$
Or $a = b = c = 1$
A simple magnitude of $\overrightarrow a $ is written as $a$.
As we know that
$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $
And it is given that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$
Let $\theta $ be the angle between $\overrightarrow a $ and $\overrightarrow c $.
Let $\beta $ be the angle between $\overrightarrow a $ and $\overrightarrow b $.
So, $\overrightarrow a .\overrightarrow c = ac\cos \theta $
Where $a = c = 1$
So, $\overrightarrow a .\overrightarrow c = \cos \theta $
Similarly, $\overrightarrow a .\overrightarrow b = ab\cos \beta $
Where $a = b = 1$
So, $\overrightarrow a .\overrightarrow b = \cos \beta $
So we got that
$
\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
\left( {\cos \theta } \right)\overrightarrow b - \left( {\cos \beta } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
$
Upon comparing both sides, we get
$\cos \theta = \dfrac{{\sqrt 3 }}{2} \Rightarrow \theta = {30^ \circ } \Rightarrow \theta = \dfrac{\pi }{6}$
And
$\cos \beta = - \dfrac{{\sqrt 3 }}{2} \Rightarrow \beta = \left( {\pi - \dfrac{\pi }{6}} \right) \Rightarrow \beta = \dfrac{{5\pi }}{6}$
So here we assume angle between $\overrightarrow a $ and $\overrightarrow b $ is $\beta $ that is $\dfrac{{5\pi }}{6}$
So, the correct answer is “Option D”.
Note:If $\overrightarrow b $ becomes parallel to $\overrightarrow c $, then, $\overrightarrow b \times \overrightarrow c = 0$. As $bc\sin \theta = \overrightarrow b \times \overrightarrow c $ and $\overrightarrow b ||\overrightarrow c $, so $\theta = 0$. Therefore, $\overrightarrow b \times \overrightarrow c = 0$. And $\left( {\overrightarrow b \times \overrightarrow c } \right)$ vector will be perpendicular to both $\overrightarrow b $ and $\overrightarrow c $. So, if $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are in same plane then $\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow b \left( {\overrightarrow a \times \overrightarrow c } \right) = \overrightarrow c \left( {\overrightarrow b \times \overrightarrow a } \right) = 0$. As if $\overrightarrow a \bot \overrightarrow b $, then $\overrightarrow a .\overrightarrow b = 0$.
Complete step-by-step answer:
So, according to the question, we are given that $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $be three unit vectors such that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$.
So from this statement, it is clear that the magnitude of $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are equal to $1$.
$|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1$
Or $a = b = c = 1$
A simple magnitude of $\overrightarrow a $ is written as $a$.
As we know that
$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $
And it is given that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$
Let $\theta $ be the angle between $\overrightarrow a $ and $\overrightarrow c $.
Let $\beta $ be the angle between $\overrightarrow a $ and $\overrightarrow b $.
So, $\overrightarrow a .\overrightarrow c = ac\cos \theta $
Where $a = c = 1$
So, $\overrightarrow a .\overrightarrow c = \cos \theta $
Similarly, $\overrightarrow a .\overrightarrow b = ab\cos \beta $
Where $a = b = 1$
So, $\overrightarrow a .\overrightarrow b = \cos \beta $
So we got that
$
\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
\left( {\cos \theta } \right)\overrightarrow b - \left( {\cos \beta } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
$
Upon comparing both sides, we get
$\cos \theta = \dfrac{{\sqrt 3 }}{2} \Rightarrow \theta = {30^ \circ } \Rightarrow \theta = \dfrac{\pi }{6}$
And
$\cos \beta = - \dfrac{{\sqrt 3 }}{2} \Rightarrow \beta = \left( {\pi - \dfrac{\pi }{6}} \right) \Rightarrow \beta = \dfrac{{5\pi }}{6}$
So here we assume angle between $\overrightarrow a $ and $\overrightarrow b $ is $\beta $ that is $\dfrac{{5\pi }}{6}$
So, the correct answer is “Option D”.
Note:If $\overrightarrow b $ becomes parallel to $\overrightarrow c $, then, $\overrightarrow b \times \overrightarrow c = 0$. As $bc\sin \theta = \overrightarrow b \times \overrightarrow c $ and $\overrightarrow b ||\overrightarrow c $, so $\theta = 0$. Therefore, $\overrightarrow b \times \overrightarrow c = 0$. And $\left( {\overrightarrow b \times \overrightarrow c } \right)$ vector will be perpendicular to both $\overrightarrow b $ and $\overrightarrow c $. So, if $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are in same plane then $\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow b \left( {\overrightarrow a \times \overrightarrow c } \right) = \overrightarrow c \left( {\overrightarrow b \times \overrightarrow a } \right) = 0$. As if $\overrightarrow a \bot \overrightarrow b $, then $\overrightarrow a .\overrightarrow b = 0$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE
Explain sex determination in humans with the help of class 12 biology CBSE