Answer
Verified
448.5k+ views
Hint:We are given that $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $be three unit vectors, so, $|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1$. And we know that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $. This is the theorem. So on further comparing this equation, you will get the answer.
Complete step-by-step answer:
So, according to the question, we are given that $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $be three unit vectors such that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$.
So from this statement, it is clear that the magnitude of $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are equal to $1$.
$|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1$
Or $a = b = c = 1$
A simple magnitude of $\overrightarrow a $ is written as $a$.
As we know that
$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $
And it is given that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$
Let $\theta $ be the angle between $\overrightarrow a $ and $\overrightarrow c $.
Let $\beta $ be the angle between $\overrightarrow a $ and $\overrightarrow b $.
So, $\overrightarrow a .\overrightarrow c = ac\cos \theta $
Where $a = c = 1$
So, $\overrightarrow a .\overrightarrow c = \cos \theta $
Similarly, $\overrightarrow a .\overrightarrow b = ab\cos \beta $
Where $a = b = 1$
So, $\overrightarrow a .\overrightarrow b = \cos \beta $
So we got that
$
\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
\left( {\cos \theta } \right)\overrightarrow b - \left( {\cos \beta } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
$
Upon comparing both sides, we get
$\cos \theta = \dfrac{{\sqrt 3 }}{2} \Rightarrow \theta = {30^ \circ } \Rightarrow \theta = \dfrac{\pi }{6}$
And
$\cos \beta = - \dfrac{{\sqrt 3 }}{2} \Rightarrow \beta = \left( {\pi - \dfrac{\pi }{6}} \right) \Rightarrow \beta = \dfrac{{5\pi }}{6}$
So here we assume angle between $\overrightarrow a $ and $\overrightarrow b $ is $\beta $ that is $\dfrac{{5\pi }}{6}$
So, the correct answer is “Option D”.
Note:If $\overrightarrow b $ becomes parallel to $\overrightarrow c $, then, $\overrightarrow b \times \overrightarrow c = 0$. As $bc\sin \theta = \overrightarrow b \times \overrightarrow c $ and $\overrightarrow b ||\overrightarrow c $, so $\theta = 0$. Therefore, $\overrightarrow b \times \overrightarrow c = 0$. And $\left( {\overrightarrow b \times \overrightarrow c } \right)$ vector will be perpendicular to both $\overrightarrow b $ and $\overrightarrow c $. So, if $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are in same plane then $\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow b \left( {\overrightarrow a \times \overrightarrow c } \right) = \overrightarrow c \left( {\overrightarrow b \times \overrightarrow a } \right) = 0$. As if $\overrightarrow a \bot \overrightarrow b $, then $\overrightarrow a .\overrightarrow b = 0$.
Complete step-by-step answer:
So, according to the question, we are given that $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $be three unit vectors such that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$.
So from this statement, it is clear that the magnitude of $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are equal to $1$.
$|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1$
Or $a = b = c = 1$
A simple magnitude of $\overrightarrow a $ is written as $a$.
As we know that
$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c $
And it is given that $\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)$
Let $\theta $ be the angle between $\overrightarrow a $ and $\overrightarrow c $.
Let $\beta $ be the angle between $\overrightarrow a $ and $\overrightarrow b $.
So, $\overrightarrow a .\overrightarrow c = ac\cos \theta $
Where $a = c = 1$
So, $\overrightarrow a .\overrightarrow c = \cos \theta $
Similarly, $\overrightarrow a .\overrightarrow b = ab\cos \beta $
Where $a = b = 1$
So, $\overrightarrow a .\overrightarrow b = \cos \beta $
So we got that
$
\left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
\left( {\cos \theta } \right)\overrightarrow b - \left( {\cos \beta } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\
$
Upon comparing both sides, we get
$\cos \theta = \dfrac{{\sqrt 3 }}{2} \Rightarrow \theta = {30^ \circ } \Rightarrow \theta = \dfrac{\pi }{6}$
And
$\cos \beta = - \dfrac{{\sqrt 3 }}{2} \Rightarrow \beta = \left( {\pi - \dfrac{\pi }{6}} \right) \Rightarrow \beta = \dfrac{{5\pi }}{6}$
So here we assume angle between $\overrightarrow a $ and $\overrightarrow b $ is $\beta $ that is $\dfrac{{5\pi }}{6}$
So, the correct answer is “Option D”.
Note:If $\overrightarrow b $ becomes parallel to $\overrightarrow c $, then, $\overrightarrow b \times \overrightarrow c = 0$. As $bc\sin \theta = \overrightarrow b \times \overrightarrow c $ and $\overrightarrow b ||\overrightarrow c $, so $\theta = 0$. Therefore, $\overrightarrow b \times \overrightarrow c = 0$. And $\left( {\overrightarrow b \times \overrightarrow c } \right)$ vector will be perpendicular to both $\overrightarrow b $ and $\overrightarrow c $. So, if $\overrightarrow a ,\overrightarrow b ,\overrightarrow c $ are in same plane then $\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow b \left( {\overrightarrow a \times \overrightarrow c } \right) = \overrightarrow c \left( {\overrightarrow b \times \overrightarrow a } \right) = 0$. As if $\overrightarrow a \bot \overrightarrow b $, then $\overrightarrow a .\overrightarrow b = 0$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE