Let \[\omega = \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}\], then the value of the determinant \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\] is
A. \[3\omega \]
B. \[3\omega \left( {\omega - 1} \right)\]
C. \[3{\omega ^2}\]
D. \[3\omega \left( {1 - \omega } \right)\]
Answer
327.9k+ views
Hint:
In this problem, \[\omega \] is the cube root of unity. And \[1 + \omega + {\omega ^2} = 0\] i.e., \[ - 1 - {\omega ^2} = \omega \] is the property of cube roots of unity. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given determinant is \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By using the property \[ - 1 - {\omega ^2} = \omega \], the determinant can be converted into \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\omega &{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By solving the determinant, we have
\[
\Rightarrow 1\left[ {\left( \omega \right)\left( {{\omega ^4}} \right) - \left( {{\omega ^2}} \right)\left( {{\omega ^2}} \right)} \right] - 1\left[ {1\left( {{\omega ^4}} \right) - 1\left( {{\omega ^2}} \right)} \right] + 1\left[ {1\left( {{\omega ^2}} \right) - 1\left( \omega \right)} \right] \\
\Rightarrow 1\left[ {{\omega ^5} - {\omega ^4}} \right] - 1\left[ {{\omega ^4} - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\]
This can be rewrite as
\[ \Rightarrow 1\left[ {{\omega ^3}{\omega ^2} - {\omega ^3}\omega } \right] - 1\left[ {{\omega ^3}\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right]\]
We know that \[{\omega ^3} = 1\], by using this formula we have
\[
\Rightarrow 1\left[ {\left( 1 \right){\omega ^2} - \left( 1 \right)\omega } \right] - 1\left[ {\left( 1 \right)\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow 1\left[ {{\omega ^2} - \omega } \right] - 1\left[ {\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow {\omega ^2} - \omega - \omega + {\omega ^2} + {\omega ^2} - \omega \\
\]
Cancelling the common terms, we have
\[
\Rightarrow 3{\omega ^2} - \omega \\
\Rightarrow 3\omega \left( {\omega - 1} \right) \\
\]
Therefore, the determinant of \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\] is \[3\omega \left( {\omega - 1} \right)\]
Thus, the correct option is B. \[3\omega \left( {\omega - 1} \right)\]
Note: In the given question ‘\[\omega \]’is the imaginary root. Always use the properties of cube roots of unity whenever you find ‘\[\omega \]’ in the question if possible so that you can solve the problem more easily.
In this problem, \[\omega \] is the cube root of unity. And \[1 + \omega + {\omega ^2} = 0\] i.e., \[ - 1 - {\omega ^2} = \omega \] is the property of cube roots of unity. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given determinant is \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By using the property \[ - 1 - {\omega ^2} = \omega \], the determinant can be converted into \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\omega &{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By solving the determinant, we have
\[
\Rightarrow 1\left[ {\left( \omega \right)\left( {{\omega ^4}} \right) - \left( {{\omega ^2}} \right)\left( {{\omega ^2}} \right)} \right] - 1\left[ {1\left( {{\omega ^4}} \right) - 1\left( {{\omega ^2}} \right)} \right] + 1\left[ {1\left( {{\omega ^2}} \right) - 1\left( \omega \right)} \right] \\
\Rightarrow 1\left[ {{\omega ^5} - {\omega ^4}} \right] - 1\left[ {{\omega ^4} - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\]
This can be rewrite as
\[ \Rightarrow 1\left[ {{\omega ^3}{\omega ^2} - {\omega ^3}\omega } \right] - 1\left[ {{\omega ^3}\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right]\]
We know that \[{\omega ^3} = 1\], by using this formula we have
\[
\Rightarrow 1\left[ {\left( 1 \right){\omega ^2} - \left( 1 \right)\omega } \right] - 1\left[ {\left( 1 \right)\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow 1\left[ {{\omega ^2} - \omega } \right] - 1\left[ {\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow {\omega ^2} - \omega - \omega + {\omega ^2} + {\omega ^2} - \omega \\
\]
Cancelling the common terms, we have
\[
\Rightarrow 3{\omega ^2} - \omega \\
\Rightarrow 3\omega \left( {\omega - 1} \right) \\
\]
Therefore, the determinant of \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\] is \[3\omega \left( {\omega - 1} \right)\]
Thus, the correct option is B. \[3\omega \left( {\omega - 1} \right)\]
Note: In the given question ‘\[\omega \]’is the imaginary root. Always use the properties of cube roots of unity whenever you find ‘\[\omega \]’ in the question if possible so that you can solve the problem more easily.
Last updated date: 01st Jun 2023
•
Total views: 327.9k
•
Views today: 2.84k
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
