
Let \[\omega = \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}\], then the value of the determinant \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\] is
A. \[3\omega \]
B. \[3\omega \left( {\omega - 1} \right)\]
C. \[3{\omega ^2}\]
D. \[3\omega \left( {1 - \omega } \right)\]
Answer
606.6k+ views
Hint:
In this problem, \[\omega \] is the cube root of unity. And \[1 + \omega + {\omega ^2} = 0\] i.e., \[ - 1 - {\omega ^2} = \omega \] is the property of cube roots of unity. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given determinant is \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By using the property \[ - 1 - {\omega ^2} = \omega \], the determinant can be converted into \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\omega &{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By solving the determinant, we have
\[
\Rightarrow 1\left[ {\left( \omega \right)\left( {{\omega ^4}} \right) - \left( {{\omega ^2}} \right)\left( {{\omega ^2}} \right)} \right] - 1\left[ {1\left( {{\omega ^4}} \right) - 1\left( {{\omega ^2}} \right)} \right] + 1\left[ {1\left( {{\omega ^2}} \right) - 1\left( \omega \right)} \right] \\
\Rightarrow 1\left[ {{\omega ^5} - {\omega ^4}} \right] - 1\left[ {{\omega ^4} - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\]
This can be rewrite as
\[ \Rightarrow 1\left[ {{\omega ^3}{\omega ^2} - {\omega ^3}\omega } \right] - 1\left[ {{\omega ^3}\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right]\]
We know that \[{\omega ^3} = 1\], by using this formula we have
\[
\Rightarrow 1\left[ {\left( 1 \right){\omega ^2} - \left( 1 \right)\omega } \right] - 1\left[ {\left( 1 \right)\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow 1\left[ {{\omega ^2} - \omega } \right] - 1\left[ {\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow {\omega ^2} - \omega - \omega + {\omega ^2} + {\omega ^2} - \omega \\
\]
Cancelling the common terms, we have
\[
\Rightarrow 3{\omega ^2} - \omega \\
\Rightarrow 3\omega \left( {\omega - 1} \right) \\
\]
Therefore, the determinant of \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\] is \[3\omega \left( {\omega - 1} \right)\]
Thus, the correct option is B. \[3\omega \left( {\omega - 1} \right)\]
Note: In the given question ‘\[\omega \]’is the imaginary root. Always use the properties of cube roots of unity whenever you find ‘\[\omega \]’ in the question if possible so that you can solve the problem more easily.
In this problem, \[\omega \] is the cube root of unity. And \[1 + \omega + {\omega ^2} = 0\] i.e., \[ - 1 - {\omega ^2} = \omega \] is the property of cube roots of unity. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given determinant is \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By using the property \[ - 1 - {\omega ^2} = \omega \], the determinant can be converted into \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\omega &{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By solving the determinant, we have
\[
\Rightarrow 1\left[ {\left( \omega \right)\left( {{\omega ^4}} \right) - \left( {{\omega ^2}} \right)\left( {{\omega ^2}} \right)} \right] - 1\left[ {1\left( {{\omega ^4}} \right) - 1\left( {{\omega ^2}} \right)} \right] + 1\left[ {1\left( {{\omega ^2}} \right) - 1\left( \omega \right)} \right] \\
\Rightarrow 1\left[ {{\omega ^5} - {\omega ^4}} \right] - 1\left[ {{\omega ^4} - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\]
This can be rewrite as
\[ \Rightarrow 1\left[ {{\omega ^3}{\omega ^2} - {\omega ^3}\omega } \right] - 1\left[ {{\omega ^3}\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right]\]
We know that \[{\omega ^3} = 1\], by using this formula we have
\[
\Rightarrow 1\left[ {\left( 1 \right){\omega ^2} - \left( 1 \right)\omega } \right] - 1\left[ {\left( 1 \right)\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow 1\left[ {{\omega ^2} - \omega } \right] - 1\left[ {\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow {\omega ^2} - \omega - \omega + {\omega ^2} + {\omega ^2} - \omega \\
\]
Cancelling the common terms, we have
\[
\Rightarrow 3{\omega ^2} - \omega \\
\Rightarrow 3\omega \left( {\omega - 1} \right) \\
\]
Therefore, the determinant of \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\] is \[3\omega \left( {\omega - 1} \right)\]
Thus, the correct option is B. \[3\omega \left( {\omega - 1} \right)\]
Note: In the given question ‘\[\omega \]’is the imaginary root. Always use the properties of cube roots of unity whenever you find ‘\[\omega \]’ in the question if possible so that you can solve the problem more easily.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

