
Let \[\omega = \dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}\], then the value of the determinant \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\] is
A. \[3\omega \]
B. \[3\omega \left( {\omega - 1} \right)\]
C. \[3{\omega ^2}\]
D. \[3\omega \left( {1 - \omega } \right)\]
Answer
621k+ views
Hint:
In this problem, \[\omega \] is the cube root of unity. And \[1 + \omega + {\omega ^2} = 0\] i.e., \[ - 1 - {\omega ^2} = \omega \] is the property of cube roots of unity. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given determinant is \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By using the property \[ - 1 - {\omega ^2} = \omega \], the determinant can be converted into \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\omega &{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By solving the determinant, we have
\[
\Rightarrow 1\left[ {\left( \omega \right)\left( {{\omega ^4}} \right) - \left( {{\omega ^2}} \right)\left( {{\omega ^2}} \right)} \right] - 1\left[ {1\left( {{\omega ^4}} \right) - 1\left( {{\omega ^2}} \right)} \right] + 1\left[ {1\left( {{\omega ^2}} \right) - 1\left( \omega \right)} \right] \\
\Rightarrow 1\left[ {{\omega ^5} - {\omega ^4}} \right] - 1\left[ {{\omega ^4} - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\]
This can be rewrite as
\[ \Rightarrow 1\left[ {{\omega ^3}{\omega ^2} - {\omega ^3}\omega } \right] - 1\left[ {{\omega ^3}\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right]\]
We know that \[{\omega ^3} = 1\], by using this formula we have
\[
\Rightarrow 1\left[ {\left( 1 \right){\omega ^2} - \left( 1 \right)\omega } \right] - 1\left[ {\left( 1 \right)\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow 1\left[ {{\omega ^2} - \omega } \right] - 1\left[ {\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow {\omega ^2} - \omega - \omega + {\omega ^2} + {\omega ^2} - \omega \\
\]
Cancelling the common terms, we have
\[
\Rightarrow 3{\omega ^2} - \omega \\
\Rightarrow 3\omega \left( {\omega - 1} \right) \\
\]
Therefore, the determinant of \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\] is \[3\omega \left( {\omega - 1} \right)\]
Thus, the correct option is B. \[3\omega \left( {\omega - 1} \right)\]
Note: In the given question ‘\[\omega \]’is the imaginary root. Always use the properties of cube roots of unity whenever you find ‘\[\omega \]’ in the question if possible so that you can solve the problem more easily.
In this problem, \[\omega \] is the cube root of unity. And \[1 + \omega + {\omega ^2} = 0\] i.e., \[ - 1 - {\omega ^2} = \omega \] is the property of cube roots of unity. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Given determinant is \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By using the property \[ - 1 - {\omega ^2} = \omega \], the determinant can be converted into \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&\omega &{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\]
By solving the determinant, we have
\[
\Rightarrow 1\left[ {\left( \omega \right)\left( {{\omega ^4}} \right) - \left( {{\omega ^2}} \right)\left( {{\omega ^2}} \right)} \right] - 1\left[ {1\left( {{\omega ^4}} \right) - 1\left( {{\omega ^2}} \right)} \right] + 1\left[ {1\left( {{\omega ^2}} \right) - 1\left( \omega \right)} \right] \\
\Rightarrow 1\left[ {{\omega ^5} - {\omega ^4}} \right] - 1\left[ {{\omega ^4} - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\]
This can be rewrite as
\[ \Rightarrow 1\left[ {{\omega ^3}{\omega ^2} - {\omega ^3}\omega } \right] - 1\left[ {{\omega ^3}\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right]\]
We know that \[{\omega ^3} = 1\], by using this formula we have
\[
\Rightarrow 1\left[ {\left( 1 \right){\omega ^2} - \left( 1 \right)\omega } \right] - 1\left[ {\left( 1 \right)\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow 1\left[ {{\omega ^2} - \omega } \right] - 1\left[ {\omega - {\omega ^2}} \right] + 1\left[ {{\omega ^2} - \omega } \right] \\
\Rightarrow {\omega ^2} - \omega - \omega + {\omega ^2} + {\omega ^2} - \omega \\
\]
Cancelling the common terms, we have
\[
\Rightarrow 3{\omega ^2} - \omega \\
\Rightarrow 3\omega \left( {\omega - 1} \right) \\
\]
Therefore, the determinant of \[\left| {\begin{array}{*{20}{c}}
1&1&1 \\
1&{ - 1 - {\omega ^2}}&{{\omega ^2}} \\
1&{{\omega ^2}}&{{\omega ^4}}
\end{array}} \right|\] is \[3\omega \left( {\omega - 1} \right)\]
Thus, the correct option is B. \[3\omega \left( {\omega - 1} \right)\]
Note: In the given question ‘\[\omega \]’is the imaginary root. Always use the properties of cube roots of unity whenever you find ‘\[\omega \]’ in the question if possible so that you can solve the problem more easily.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

