
Let \[f(x)=\left\{ \begin{matrix}
\dfrac{x}{\sin x},x>0 \\
2-x,x\le 0 \\
\end{matrix} \right.\] and $g(x)=\left\{ \begin{matrix}
x+3,x<1 \\
{{x}^{2}}-2x-2,1\le x<2 \\
x-5,x\ge 2 \\
\end{matrix} \right.$. Find LHL and RHL of g(f(x)) at x=0 and hence find \[\underset{x\to 0}{\mathop{\lim }}\,g(f(x)).\].
Answer
607.5k+ views
Hint: Find Left hand limit and Right Hand Limit of f(x) as well as g(f(x)). For finding out whether the limit exists, we should find the left hand limit and right hand limit. If they are equal then the limit exists.
In the question the functions given are:
\[f(x)=\left\{ \begin{matrix}
\dfrac{x}{\sin x},x>0 \\
2-x,x\le 0 \\
\end{matrix} \right.\]
$g(x)=\left\{ \begin{matrix}
x+3,x<1 \\
{{x}^{2}}-2x-2,1\le x<2 \\
x-5,x\ge 2 \\
\end{matrix} \right.$
Here we have to find the left hand limit.
For finding the left hand limit, we have to consider $x\to {{0}^{-}}$.
So, when x tends to ‘0’ from left hand side then,
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,2-x\]
Applying the limit, we get
$\Rightarrow $\[f\left( {{0}^{-}} \right)=2\]
So, now considering the function g(f(x), here g(f(x) becomes g(2).
So, here we have to consider the function g(x) then x tends to${{2}^{+}}$ because the value of ‘x’ is greater than ‘2’.
Then,
\[\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,x-5\]
Applying the limit, we get
\[g\left( {{2}^{+}} \right)=-3\]
Then the left hand limit is ‘-3’ at x=0.
So the left hand limit of g(f(x)) is ‘-3’ at x=0.
For finding the right hand limit, we have to consider $x\to {{0}^{+}}$.
So referring to the given function, when x tends to ‘0’ from right hand side then,
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{x}{\sin x} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1}{\dfrac{\sin x}{x}} \\
\end{align}\]
But we know $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ , so the above equation becomes,
\[\Rightarrow f({{0}^{+}})=1\]
So, now considering the function g(f(x), here g(f(x) becomes g(1).
So, here we have to consider the function g(x) then x tends to${{1}^{+}}$ because the value of ‘x’ is greater than ‘1’.
Then,
\[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,{{x}^{2}}-2x-2\]
Applying the limit, we get
\[g\left( {{1}^{+}} \right)=1-2-2=-3\]
Then the right hand limit is ‘-3’ at x=0.
So the right hand limit of g(f(x)) is ‘-3’ at x=0.
Hence LHL=RHL.
Hence, the correct answer is \[\underset{x\to 0}{\mathop{\lim }}\,g(f(x))=-3\]
Note: A possible mistake is when finding \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,{{x}^{2}}-2x-2\], then student think this is the right hand limit of g(x) at x=1.
Students get confused when finding the left hand limit of g(f(x)).
When they find f(x) at x=0, they take the limit of g(x), i.e., \[\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,g\left( x \right)\]as ${{2}^{-1}}$ thinking this is left hand limit. But this will lead to the wrong answer.
In these types of questions students have confusions while finding the left hand and right hand limit so be careful.
In the question the functions given are:
\[f(x)=\left\{ \begin{matrix}
\dfrac{x}{\sin x},x>0 \\
2-x,x\le 0 \\
\end{matrix} \right.\]
$g(x)=\left\{ \begin{matrix}
x+3,x<1 \\
{{x}^{2}}-2x-2,1\le x<2 \\
x-5,x\ge 2 \\
\end{matrix} \right.$
Here we have to find the left hand limit.
For finding the left hand limit, we have to consider $x\to {{0}^{-}}$.
So, when x tends to ‘0’ from left hand side then,
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,2-x\]
Applying the limit, we get
$\Rightarrow $\[f\left( {{0}^{-}} \right)=2\]
So, now considering the function g(f(x), here g(f(x) becomes g(2).
So, here we have to consider the function g(x) then x tends to${{2}^{+}}$ because the value of ‘x’ is greater than ‘2’.
Then,
\[\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,x-5\]
Applying the limit, we get
\[g\left( {{2}^{+}} \right)=-3\]
Then the left hand limit is ‘-3’ at x=0.
So the left hand limit of g(f(x)) is ‘-3’ at x=0.
For finding the right hand limit, we have to consider $x\to {{0}^{+}}$.
So referring to the given function, when x tends to ‘0’ from right hand side then,
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{x}{\sin x} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1}{\dfrac{\sin x}{x}} \\
\end{align}\]
But we know $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ , so the above equation becomes,
\[\Rightarrow f({{0}^{+}})=1\]
So, now considering the function g(f(x), here g(f(x) becomes g(1).
So, here we have to consider the function g(x) then x tends to${{1}^{+}}$ because the value of ‘x’ is greater than ‘1’.
Then,
\[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,{{x}^{2}}-2x-2\]
Applying the limit, we get
\[g\left( {{1}^{+}} \right)=1-2-2=-3\]
Then the right hand limit is ‘-3’ at x=0.
So the right hand limit of g(f(x)) is ‘-3’ at x=0.
Hence LHL=RHL.
Hence, the correct answer is \[\underset{x\to 0}{\mathop{\lim }}\,g(f(x))=-3\]
Note: A possible mistake is when finding \[\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,g\left( x \right)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,{{x}^{2}}-2x-2\], then student think this is the right hand limit of g(x) at x=1.
Students get confused when finding the left hand limit of g(f(x)).
When they find f(x) at x=0, they take the limit of g(x), i.e., \[\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,g\left( x \right)\]as ${{2}^{-1}}$ thinking this is left hand limit. But this will lead to the wrong answer.
In these types of questions students have confusions while finding the left hand and right hand limit so be careful.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

