
Let $f(x)=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)}$then $\dfrac{d\left[ {{f}^{-1}}\left( x \right) \right]}{dx}$ is equals to-
A. \[-\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}}\]
B. \[\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}}\]
C. \[\dfrac{1}{^{\mathop{\left( 1-x \right)}^{2}}}\]
D. \[-\dfrac{1}{^{\mathop{\left( 1-x \right)}^{2}}}\]
Answer
507k+ views
Hint: Type of questions are based on the function and differentiation. Which asks for both. As in this question one function is given, and we had to find out the differentiation of the inverse of the given function. So for this first we will find out the inverse of a given function, which states to find the inverse of function, we will replace ‘x’ with ‘y’ and ‘y’ with ‘x’ in the given function, and then find the value of y. And then we will simply differentiate it.
Complete step by step answer:
So, the given function in the question i.e. $f(x)=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)}$, to find the inversed of given, we will replace ‘x’ with ;y; and ‘y’ with ‘x’ in whole given function. So the function we will get will be;
\[\begin{align}
& f(x)=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)} \\
& y=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)} \\
& x=\dfrac{({{y}^{2}}-y)}{({{y}^{2}}+2y)} \\
\end{align}\]
Now we had to find out the value of ‘y’ from the above equation, so on solving we will get;
\[\begin{align}
& x=\dfrac{({{y}^{2}}-y)}{({{y}^{2}}+2y)} \\
& x=\dfrac{y(y-1)}{y(y+2)} \\
& x=\dfrac{(y-1)}{(y+2)} \\
& \dfrac{y+2}{y-1}=\dfrac{1}{x} \\
\end{align}\]
Now subtracting 1 from L.H.S and R.H.S side, we will get;
\[\begin{align}
& \dfrac{y+2}{y-1}=\dfrac{1}{x} \\
& \dfrac{y+2}{y-1}-1=\dfrac{1}{x}-1 \\
& \dfrac{y+2-(y-1)}{y-1}=\dfrac{1-x}{x} \\
& \dfrac{3}{y-1}=\dfrac{1-x}{x} \\
& \dfrac{3x}{1-x}=y-1 \\
& \dfrac{3x}{1-x}+1=y \\
& \dfrac{2x+1}{1-x}=y \\
\end{align}\]
So, ${{f}^{-1}}\left( x \right)=\dfrac{2x+1}{1-x}$
Now, we had to differentiate it. Since it is in the$\dfrac{\text{I}}{\text{II}}$form, which can be differentiated by the quotient rule, which says that $\dfrac{d\left[ \dfrac{\text{I}}{\text{II}} \right]}{dx}=\dfrac{\text{II}\dfrac{d\left( \text{I} \right)}{dx}-\text{I}\dfrac{d\left( \text{II} \right)}{dx}}{^{\mathop{\left( \text{II} \right)}^{2}}}$, comparing it with our ${{f}^{-1}}\left( x \right)=\dfrac{2x+1}{1-x}$, $\text{I=2x+1}$and $\text{II=1-x}$. So now differentiating it with according to the formula we will get;
\[\begin{align}
& \dfrac{d\left[ \dfrac{\text{I}}{\text{II}} \right]}{dx}=\dfrac{\text{II}\dfrac{d\left( \text{I} \right)}{dx}-\text{I}\dfrac{d\left( \text{II} \right)}{dx}}{^{\mathop{\left( \text{II} \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 1-x \right)\dfrac{d\left( 2x+1 \right)}{dx}-\left( 2x+1 \right)\dfrac{d\left( 1-x \right)}{dx}}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 1-x \right)(2)-\left( 2x+1 \right)(-1)}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 2-2x \right)-\left( -2x-1 \right)}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{2-2x+2x+1}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ {{f}^{-1}}\left( x \right) \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}} \\
\end{align}\]
So, \[\dfrac{d\left[ {{f}^{-1}}\left( x \right) \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}}\]
So, the correct answer is “Option B”.
Note: To solve such a question you should very well know how to differentiate the basic function. And be patient to apply the quotient rule formula while differentiating, that in the denominator we will have a square of $\text{II}$which is $\text{1-x}$ in our case.
Complete step by step answer:
So, the given function in the question i.e. $f(x)=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)}$, to find the inversed of given, we will replace ‘x’ with ;y; and ‘y’ with ‘x’ in whole given function. So the function we will get will be;
\[\begin{align}
& f(x)=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)} \\
& y=\dfrac{({{x}^{2}}-x)}{({{x}^{2}}+2x)} \\
& x=\dfrac{({{y}^{2}}-y)}{({{y}^{2}}+2y)} \\
\end{align}\]
Now we had to find out the value of ‘y’ from the above equation, so on solving we will get;
\[\begin{align}
& x=\dfrac{({{y}^{2}}-y)}{({{y}^{2}}+2y)} \\
& x=\dfrac{y(y-1)}{y(y+2)} \\
& x=\dfrac{(y-1)}{(y+2)} \\
& \dfrac{y+2}{y-1}=\dfrac{1}{x} \\
\end{align}\]
Now subtracting 1 from L.H.S and R.H.S side, we will get;
\[\begin{align}
& \dfrac{y+2}{y-1}=\dfrac{1}{x} \\
& \dfrac{y+2}{y-1}-1=\dfrac{1}{x}-1 \\
& \dfrac{y+2-(y-1)}{y-1}=\dfrac{1-x}{x} \\
& \dfrac{3}{y-1}=\dfrac{1-x}{x} \\
& \dfrac{3x}{1-x}=y-1 \\
& \dfrac{3x}{1-x}+1=y \\
& \dfrac{2x+1}{1-x}=y \\
\end{align}\]
So, ${{f}^{-1}}\left( x \right)=\dfrac{2x+1}{1-x}$
Now, we had to differentiate it. Since it is in the$\dfrac{\text{I}}{\text{II}}$form, which can be differentiated by the quotient rule, which says that $\dfrac{d\left[ \dfrac{\text{I}}{\text{II}} \right]}{dx}=\dfrac{\text{II}\dfrac{d\left( \text{I} \right)}{dx}-\text{I}\dfrac{d\left( \text{II} \right)}{dx}}{^{\mathop{\left( \text{II} \right)}^{2}}}$, comparing it with our ${{f}^{-1}}\left( x \right)=\dfrac{2x+1}{1-x}$, $\text{I=2x+1}$and $\text{II=1-x}$. So now differentiating it with according to the formula we will get;
\[\begin{align}
& \dfrac{d\left[ \dfrac{\text{I}}{\text{II}} \right]}{dx}=\dfrac{\text{II}\dfrac{d\left( \text{I} \right)}{dx}-\text{I}\dfrac{d\left( \text{II} \right)}{dx}}{^{\mathop{\left( \text{II} \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 1-x \right)\dfrac{d\left( 2x+1 \right)}{dx}-\left( 2x+1 \right)\dfrac{d\left( 1-x \right)}{dx}}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 1-x \right)(2)-\left( 2x+1 \right)(-1)}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{\left( 2-2x \right)-\left( -2x-1 \right)}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{2-2x+2x+1}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ \dfrac{2x+1}{1-x} \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}} \\
& \dfrac{d\left[ {{f}^{-1}}\left( x \right) \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}} \\
\end{align}\]
So, \[\dfrac{d\left[ {{f}^{-1}}\left( x \right) \right]}{dx}=\dfrac{3}{^{\mathop{\left( 1-x \right)}^{2}}}\]
So, the correct answer is “Option B”.
Note: To solve such a question you should very well know how to differentiate the basic function. And be patient to apply the quotient rule formula while differentiating, that in the denominator we will have a square of $\text{II}$which is $\text{1-x}$ in our case.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

