# Let F(x) = ${{\text{e}}^{\text{x}}}$, G(x) = ${{\text{e}}^{{\text{ - x}}}}$ and H(x) = g(F(x)), where x is a real variable. Then $\dfrac{{{\text{dH}}}}{{{\text{dx}}}}$ at x = 0 is

A. 1

B. -1

C. $ - \dfrac{1}{{\text{e}}}$

D. -e

Last updated date: 19th Mar 2023

•

Total views: 303.6k

•

Views today: 5.86k

Answer

Verified

303.6k+ views

Hint: Here in this question we will use the concept of composite function and differentiation to solve the question.

Complete step-by-step answer:

A composite function is a function that depends on another function. A composite function is created when a function is substituted in another function. In this question H(x) is a composite function because F(x) is being substituted in the function G(x).

Now, it is it given that F(x) = ${{\text{e}}^{\text{x}}}$, G(x) = ${{\text{e}}^{{\text{ - x}}}}$ and H(x) = G(F(x)). Now, finding H(x) by substituting F(x) in G(x). So,

H(x) = G (${{\text{e}}^{\text{x}}}$)

H(x) = ${{\text{e}}^{ - {{\text{e}}^x}}}$ …… (1)

Now we will differentiate equation (1) both sides with respect to x to find $\dfrac{{{\text{dH}}}}{{{\text{dx}}}}$. So,

$\dfrac{{{\text{dH}}}}{{{\text{dx}}}}{\text{ = }}\dfrac{{{\text{d(}}{{\text{e}}^{ - {{\text{e}}^{\text{x}}}}})}}{{{\text{dx}}}}$

As $\dfrac{{{\text{d(}}{{\text{e}}^{\text{x}}})}}{{{\text{dx}}}}{\text{ = }}{{\text{e}}^{\text{x}}}$. Applying chain rule in the above equation we get,

$\dfrac{{{\text{dH}}}}{{{\text{dx}}}}{\text{ = (}}{{\text{e}}^{ - {{\text{e}}^{\text{x}}}}})( - {{\text{e}}^{\text{x}}})(1)$

$ \Rightarrow $ $\dfrac{{{\text{dH}}}}{{{\text{dx}}}}{\text{ = - }}{{\text{e}}^{ - {{\text{e}}^{\text{x}}}}}{{\text{e}}^{\text{x}}}$ ……. (2)

Now we have to find the value of $\dfrac{{{\text{dH}}}}{{{\text{dx}}}}$ when x = 0. So, Putting x = 0 in the equation (2)

$ \Rightarrow $ $\dfrac{{{\text{dH}}}}{{{\text{dx}}}}{\text{ = - }}{{\text{e}}^{ - {{\text{e}}^0}}}{{\text{e}}^0}{\text{ = - }}{{\text{e}}^{ - 1}}{\text{ = - }}\dfrac{1}{{\text{e}}}{\text{ }}$

So, $\dfrac{{{\text{dH}}}}{{{\text{dx}}}}{\text{ = - }}\dfrac{1}{{\text{e}}}$ i.e. option (C) is the correct answer.

Note: While solving such problems, always substitute the correct function in another function. For example, if it is given F(G(x)) then substitute function G(x) in the function F(x) instead of doing the reverse which leads to incorrect answers. Also, perform differentiation properly to remove any error. Also, double check your answer to ensure that there is no mistake in the solution.

Complete step-by-step answer:

A composite function is a function that depends on another function. A composite function is created when a function is substituted in another function. In this question H(x) is a composite function because F(x) is being substituted in the function G(x).

Now, it is it given that F(x) = ${{\text{e}}^{\text{x}}}$, G(x) = ${{\text{e}}^{{\text{ - x}}}}$ and H(x) = G(F(x)). Now, finding H(x) by substituting F(x) in G(x). So,

H(x) = G (${{\text{e}}^{\text{x}}}$)

H(x) = ${{\text{e}}^{ - {{\text{e}}^x}}}$ …… (1)

Now we will differentiate equation (1) both sides with respect to x to find $\dfrac{{{\text{dH}}}}{{{\text{dx}}}}$. So,

$\dfrac{{{\text{dH}}}}{{{\text{dx}}}}{\text{ = }}\dfrac{{{\text{d(}}{{\text{e}}^{ - {{\text{e}}^{\text{x}}}}})}}{{{\text{dx}}}}$

As $\dfrac{{{\text{d(}}{{\text{e}}^{\text{x}}})}}{{{\text{dx}}}}{\text{ = }}{{\text{e}}^{\text{x}}}$. Applying chain rule in the above equation we get,

$\dfrac{{{\text{dH}}}}{{{\text{dx}}}}{\text{ = (}}{{\text{e}}^{ - {{\text{e}}^{\text{x}}}}})( - {{\text{e}}^{\text{x}}})(1)$

$ \Rightarrow $ $\dfrac{{{\text{dH}}}}{{{\text{dx}}}}{\text{ = - }}{{\text{e}}^{ - {{\text{e}}^{\text{x}}}}}{{\text{e}}^{\text{x}}}$ ……. (2)

Now we have to find the value of $\dfrac{{{\text{dH}}}}{{{\text{dx}}}}$ when x = 0. So, Putting x = 0 in the equation (2)

$ \Rightarrow $ $\dfrac{{{\text{dH}}}}{{{\text{dx}}}}{\text{ = - }}{{\text{e}}^{ - {{\text{e}}^0}}}{{\text{e}}^0}{\text{ = - }}{{\text{e}}^{ - 1}}{\text{ = - }}\dfrac{1}{{\text{e}}}{\text{ }}$

So, $\dfrac{{{\text{dH}}}}{{{\text{dx}}}}{\text{ = - }}\dfrac{1}{{\text{e}}}$ i.e. option (C) is the correct answer.

Note: While solving such problems, always substitute the correct function in another function. For example, if it is given F(G(x)) then substitute function G(x) in the function F(x) instead of doing the reverse which leads to incorrect answers. Also, perform differentiation properly to remove any error. Also, double check your answer to ensure that there is no mistake in the solution.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?