Answer

Verified

477.6k+ views

Hint: Differentiate \[g\left( f\left( x \right) \right)=x\text{ and }h\left( g\left( g\left( x \right) \right) \right)=x\]by replacing \[x\text{ by }f\left( x \right)\text{in }h\left( g\left( g\left( x \right) \right) \right)=x\]twice.

We are given that \[f\left( x \right)={{x}^{3}}+3x+2,\text{ }g\left( f\left( x \right) \right)=x\text{ and }h\left( g\left( g\left( x \right) \right) \right)=x\text{ for }x\in R.\]

Now, we have to find the values of \[{{g}^{'}}\left( 2 \right),{{h}^{'}}\left( 1 \right),h\left( 0 \right)\text{ and }h\left( g\left( 3 \right) \right)\]

We are given that \[g\left( f\left( x \right) \right)=x\]

Now, we will differentiate both sides with respect to x.

Also we know that \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}\]

Also, by chain rule, if \[y=f\left( u \right)\text{ and }u=g\left( x \right)\], then

\[\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}\]

Therefore, we get \[{{g}^{'}}\left( f\left( x \right) \right).{{f}^{'}}\left( x \right)=1\]

\[{{g}^{'}}\left( f\left( x \right) \right)=\dfrac{1}{{{f}^{'}}\left( x \right)}....\left( i \right)\]

Also, \[f\left( x \right)={{x}^{3}}+3x+2\]

By differentiating both sides with respect to x,

We get, \[{{f}^{'}}\left( x \right)=3{{x}^{2}}+3....\left( ii \right)\]

Now, to get \[g'\left( 2 \right)\], we put \[f\left( x \right)=2\]in equation (i)

We get, \[{{g}^{'}}\left( 2 \right)=\dfrac{1}{{{f}^{'}}\left( x \right)}....\left( iii \right)\]

Now, for \[f\left( x \right)=2\]

That is \[{{x}^{3}}+3x+2=2\]

We get, \[{{x}^{3}}+3x=0\]

\[x\left( {{x}^{2}}+3 \right)=0\]

As we know that \[{{x}^{2}}\ne -3\], therefore we get x = 0

By putting x = 0 in equation (iii), we get

\[{{g}^{'}}\left( 2 \right)=\dfrac{1}{{{f}^{'}}\left( 0 \right)}\]

To get \[{{f}^{'}}\left( 0 \right)\], we put x = 0 in equation (ii)

We get \[{{f}^{'}}\left( 0 \right)=3\]

Therefore we get, \[{{g}^{'}}\left( 2 \right)=\dfrac{1}{3}\]

Now we are given that \[h\left( g\left( g\left( x \right) \right) \right)=x\]

Here we will replace x by \[f\left( x \right)\],

So we get \[h\left( g\left( g\left( f\left( x \right) \right) \right) \right)=f\left( x \right)\]

We know that \[g\left( f\left( x \right) \right)=x\]

\[h\left( g\left( x \right) \right)=f\left( x \right)....\left( iv \right)\]

Now, again we will replace x by \[f\left( x \right)\].

So we get, \[h\left( g\left( f\left( x \right) \right) \right)=f\left( f\left( x \right) \right)\]

We know that \[g\left( f\left( x \right) \right)=x\]

So, we get \[h\left( x \right)=f\left( f\left( x \right) \right)....\left( v \right)\]

Now by differentiating both sides,

And by chain rule, if \[y=f\left( u \right)\text{ and }u=g\left( x \right)\]then

\[\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}\]

So, we get \[{{h}^{'}}\left( x \right)={{f}^{'}}\left( f\left( x \right) \right).{{f}^{'}}\left( x \right)....\left( vi \right)\]

Now to get \[h\left( g\left( 3 \right) \right)\], we will first put x = 3 in equation (iv)

So we get \[h\left( g\left( 3 \right) \right)=f\left( 3 \right)\]

Therefore, \[h\left( g\left( 3 \right) \right)={{\left( 3 \right)}^{3}}+3\left( 3 \right)+2=38\]

Now to get \[h\left( 0 \right)\], we will put x = 0 in equation (v)

We get \[h\left( 0 \right)=f\left( f\left( 0 \right) \right)\]

\[\Rightarrow h\left( 0 \right)=f\left( {{\left( 0 \right)}^{3}}+3\left( 0 \right)+2 \right)\]

\[\Rightarrow h\left( 0 \right)=f\left( 2 \right)\]

\[\Rightarrow h\left( 0 \right)={{\left( 2 \right)}^{3}}+3\left( 2 \right)+2\]

Therefore, we get \[h\left( 0 \right)=8+6+2=16\]

Now, to get \[{{h}^{'}}\left( 1 \right)\], we will put x = 1 in equation (vi)

\[{{h}^{'}}\left( 1 \right)={{f}^{'}}\left( f\left( 1 \right) \right).{{f}^{'}}\left( 1 \right)\]

\[={{f}^{'}}\left( {{\left( 1 \right)}^{3}}+3\left( 1 \right)+2 \right).{{f}^{'}}\left( 1 \right)\]

\[={{f}^{'}}\left( 6 \right).{{f}^{'}}\left( 1 \right)\]

To get \[{{f}^{'}}\left( 6 \right)\]and \[{{f}^{'}}\left( 1 \right)\], we will put x = 6 and x = 1 in equation (ii)

We get, \[{{h}^{'}}\left( 1 \right)=\left[ 3{{\left( 6 \right)}^{2}}+3 \right].\left[ 3{{\left( 1 \right)}^{2}}+3 \right]\]

\[=\left( 3\times 36+3 \right).\left( 6 \right)\]

\[=\left( 111 \right).6\]

\[=666\]

Therefore we get,

\[\begin{align}

& \Rightarrow {{g}^{'}}\left( 2 \right)=\dfrac{1}{3} \\

& \Rightarrow {{h}^{'}}\left( 1 \right)=666 \\

& \Rightarrow h\left( 0 \right)=16 \\

& \Rightarrow h\left( g\left( 3 \right) \right)=38 \\

\end{align}\]

Hence option (b) and (c) are correct.

Note: Students often write differentiation of \[g\left( f\left( x \right) \right)={{g}^{'}}f\left( x \right)\]and miss the differentiation of \[f\left( x \right)\]which is \[{{f}^{'}}\left( x \right)\]. So they must keep in mind the chain rule and correct differentiation of \[g\left( f\left( x \right) \right)\]is \[{{g}^{'}}f\left( x \right).{{f}^{'}}\left( x \right)\]and similar rules must be followed for all composite functions.

We are given that \[f\left( x \right)={{x}^{3}}+3x+2,\text{ }g\left( f\left( x \right) \right)=x\text{ and }h\left( g\left( g\left( x \right) \right) \right)=x\text{ for }x\in R.\]

Now, we have to find the values of \[{{g}^{'}}\left( 2 \right),{{h}^{'}}\left( 1 \right),h\left( 0 \right)\text{ and }h\left( g\left( 3 \right) \right)\]

We are given that \[g\left( f\left( x \right) \right)=x\]

Now, we will differentiate both sides with respect to x.

Also we know that \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}\]

Also, by chain rule, if \[y=f\left( u \right)\text{ and }u=g\left( x \right)\], then

\[\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}\]

Therefore, we get \[{{g}^{'}}\left( f\left( x \right) \right).{{f}^{'}}\left( x \right)=1\]

\[{{g}^{'}}\left( f\left( x \right) \right)=\dfrac{1}{{{f}^{'}}\left( x \right)}....\left( i \right)\]

Also, \[f\left( x \right)={{x}^{3}}+3x+2\]

By differentiating both sides with respect to x,

We get, \[{{f}^{'}}\left( x \right)=3{{x}^{2}}+3....\left( ii \right)\]

Now, to get \[g'\left( 2 \right)\], we put \[f\left( x \right)=2\]in equation (i)

We get, \[{{g}^{'}}\left( 2 \right)=\dfrac{1}{{{f}^{'}}\left( x \right)}....\left( iii \right)\]

Now, for \[f\left( x \right)=2\]

That is \[{{x}^{3}}+3x+2=2\]

We get, \[{{x}^{3}}+3x=0\]

\[x\left( {{x}^{2}}+3 \right)=0\]

As we know that \[{{x}^{2}}\ne -3\], therefore we get x = 0

By putting x = 0 in equation (iii), we get

\[{{g}^{'}}\left( 2 \right)=\dfrac{1}{{{f}^{'}}\left( 0 \right)}\]

To get \[{{f}^{'}}\left( 0 \right)\], we put x = 0 in equation (ii)

We get \[{{f}^{'}}\left( 0 \right)=3\]

Therefore we get, \[{{g}^{'}}\left( 2 \right)=\dfrac{1}{3}\]

Now we are given that \[h\left( g\left( g\left( x \right) \right) \right)=x\]

Here we will replace x by \[f\left( x \right)\],

So we get \[h\left( g\left( g\left( f\left( x \right) \right) \right) \right)=f\left( x \right)\]

We know that \[g\left( f\left( x \right) \right)=x\]

\[h\left( g\left( x \right) \right)=f\left( x \right)....\left( iv \right)\]

Now, again we will replace x by \[f\left( x \right)\].

So we get, \[h\left( g\left( f\left( x \right) \right) \right)=f\left( f\left( x \right) \right)\]

We know that \[g\left( f\left( x \right) \right)=x\]

So, we get \[h\left( x \right)=f\left( f\left( x \right) \right)....\left( v \right)\]

Now by differentiating both sides,

And by chain rule, if \[y=f\left( u \right)\text{ and }u=g\left( x \right)\]then

\[\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}\]

So, we get \[{{h}^{'}}\left( x \right)={{f}^{'}}\left( f\left( x \right) \right).{{f}^{'}}\left( x \right)....\left( vi \right)\]

Now to get \[h\left( g\left( 3 \right) \right)\], we will first put x = 3 in equation (iv)

So we get \[h\left( g\left( 3 \right) \right)=f\left( 3 \right)\]

Therefore, \[h\left( g\left( 3 \right) \right)={{\left( 3 \right)}^{3}}+3\left( 3 \right)+2=38\]

Now to get \[h\left( 0 \right)\], we will put x = 0 in equation (v)

We get \[h\left( 0 \right)=f\left( f\left( 0 \right) \right)\]

\[\Rightarrow h\left( 0 \right)=f\left( {{\left( 0 \right)}^{3}}+3\left( 0 \right)+2 \right)\]

\[\Rightarrow h\left( 0 \right)=f\left( 2 \right)\]

\[\Rightarrow h\left( 0 \right)={{\left( 2 \right)}^{3}}+3\left( 2 \right)+2\]

Therefore, we get \[h\left( 0 \right)=8+6+2=16\]

Now, to get \[{{h}^{'}}\left( 1 \right)\], we will put x = 1 in equation (vi)

\[{{h}^{'}}\left( 1 \right)={{f}^{'}}\left( f\left( 1 \right) \right).{{f}^{'}}\left( 1 \right)\]

\[={{f}^{'}}\left( {{\left( 1 \right)}^{3}}+3\left( 1 \right)+2 \right).{{f}^{'}}\left( 1 \right)\]

\[={{f}^{'}}\left( 6 \right).{{f}^{'}}\left( 1 \right)\]

To get \[{{f}^{'}}\left( 6 \right)\]and \[{{f}^{'}}\left( 1 \right)\], we will put x = 6 and x = 1 in equation (ii)

We get, \[{{h}^{'}}\left( 1 \right)=\left[ 3{{\left( 6 \right)}^{2}}+3 \right].\left[ 3{{\left( 1 \right)}^{2}}+3 \right]\]

\[=\left( 3\times 36+3 \right).\left( 6 \right)\]

\[=\left( 111 \right).6\]

\[=666\]

Therefore we get,

\[\begin{align}

& \Rightarrow {{g}^{'}}\left( 2 \right)=\dfrac{1}{3} \\

& \Rightarrow {{h}^{'}}\left( 1 \right)=666 \\

& \Rightarrow h\left( 0 \right)=16 \\

& \Rightarrow h\left( g\left( 3 \right) \right)=38 \\

\end{align}\]

Hence option (b) and (c) are correct.

Note: Students often write differentiation of \[g\left( f\left( x \right) \right)={{g}^{'}}f\left( x \right)\]and miss the differentiation of \[f\left( x \right)\]which is \[{{f}^{'}}\left( x \right)\]. So they must keep in mind the chain rule and correct differentiation of \[g\left( f\left( x \right) \right)\]is \[{{g}^{'}}f\left( x \right).{{f}^{'}}\left( x \right)\]and similar rules must be followed for all composite functions.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How do you graph the function fx 4x class 9 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE