
Let \[f:R\to R,\text{ }g:R\to R\text{ and }h:R\to R\]be differentiable functions such that \[f\left( x \right)={{x}^{3}}+3x+2,\text{ }g\left( f\left( x \right) \right)=x\text{ and }h\left( g\left( g\left( x \right) \right) \right)=x\text{ for all }x\in R.\]Then.
(a) \[{{g}^{'}}\left( 2 \right)=\dfrac{1}{15}\]
(b) \[{{h}^{'}}\left( 1 \right)=666\]
(c) \[h\left( 0 \right)=16\]
(d) \[h\left( g\left( 3 \right) \right)=36\]
Answer
622.8k+ views
Hint: Differentiate \[g\left( f\left( x \right) \right)=x\text{ and }h\left( g\left( g\left( x \right) \right) \right)=x\]by replacing \[x\text{ by }f\left( x \right)\text{in }h\left( g\left( g\left( x \right) \right) \right)=x\]twice.
We are given that \[f\left( x \right)={{x}^{3}}+3x+2,\text{ }g\left( f\left( x \right) \right)=x\text{ and }h\left( g\left( g\left( x \right) \right) \right)=x\text{ for }x\in R.\]
Now, we have to find the values of \[{{g}^{'}}\left( 2 \right),{{h}^{'}}\left( 1 \right),h\left( 0 \right)\text{ and }h\left( g\left( 3 \right) \right)\]
We are given that \[g\left( f\left( x \right) \right)=x\]
Now, we will differentiate both sides with respect to x.
Also we know that \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}\]
Also, by chain rule, if \[y=f\left( u \right)\text{ and }u=g\left( x \right)\], then
\[\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}\]
Therefore, we get \[{{g}^{'}}\left( f\left( x \right) \right).{{f}^{'}}\left( x \right)=1\]
\[{{g}^{'}}\left( f\left( x \right) \right)=\dfrac{1}{{{f}^{'}}\left( x \right)}....\left( i \right)\]
Also, \[f\left( x \right)={{x}^{3}}+3x+2\]
By differentiating both sides with respect to x,
We get, \[{{f}^{'}}\left( x \right)=3{{x}^{2}}+3....\left( ii \right)\]
Now, to get \[g'\left( 2 \right)\], we put \[f\left( x \right)=2\]in equation (i)
We get, \[{{g}^{'}}\left( 2 \right)=\dfrac{1}{{{f}^{'}}\left( x \right)}....\left( iii \right)\]
Now, for \[f\left( x \right)=2\]
That is \[{{x}^{3}}+3x+2=2\]
We get, \[{{x}^{3}}+3x=0\]
\[x\left( {{x}^{2}}+3 \right)=0\]
As we know that \[{{x}^{2}}\ne -3\], therefore we get x = 0
By putting x = 0 in equation (iii), we get
\[{{g}^{'}}\left( 2 \right)=\dfrac{1}{{{f}^{'}}\left( 0 \right)}\]
To get \[{{f}^{'}}\left( 0 \right)\], we put x = 0 in equation (ii)
We get \[{{f}^{'}}\left( 0 \right)=3\]
Therefore we get, \[{{g}^{'}}\left( 2 \right)=\dfrac{1}{3}\]
Now we are given that \[h\left( g\left( g\left( x \right) \right) \right)=x\]
Here we will replace x by \[f\left( x \right)\],
So we get \[h\left( g\left( g\left( f\left( x \right) \right) \right) \right)=f\left( x \right)\]
We know that \[g\left( f\left( x \right) \right)=x\]
\[h\left( g\left( x \right) \right)=f\left( x \right)....\left( iv \right)\]
Now, again we will replace x by \[f\left( x \right)\].
So we get, \[h\left( g\left( f\left( x \right) \right) \right)=f\left( f\left( x \right) \right)\]
We know that \[g\left( f\left( x \right) \right)=x\]
So, we get \[h\left( x \right)=f\left( f\left( x \right) \right)....\left( v \right)\]
Now by differentiating both sides,
And by chain rule, if \[y=f\left( u \right)\text{ and }u=g\left( x \right)\]then
\[\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}\]
So, we get \[{{h}^{'}}\left( x \right)={{f}^{'}}\left( f\left( x \right) \right).{{f}^{'}}\left( x \right)....\left( vi \right)\]
Now to get \[h\left( g\left( 3 \right) \right)\], we will first put x = 3 in equation (iv)
So we get \[h\left( g\left( 3 \right) \right)=f\left( 3 \right)\]
Therefore, \[h\left( g\left( 3 \right) \right)={{\left( 3 \right)}^{3}}+3\left( 3 \right)+2=38\]
Now to get \[h\left( 0 \right)\], we will put x = 0 in equation (v)
We get \[h\left( 0 \right)=f\left( f\left( 0 \right) \right)\]
\[\Rightarrow h\left( 0 \right)=f\left( {{\left( 0 \right)}^{3}}+3\left( 0 \right)+2 \right)\]
\[\Rightarrow h\left( 0 \right)=f\left( 2 \right)\]
\[\Rightarrow h\left( 0 \right)={{\left( 2 \right)}^{3}}+3\left( 2 \right)+2\]
Therefore, we get \[h\left( 0 \right)=8+6+2=16\]
Now, to get \[{{h}^{'}}\left( 1 \right)\], we will put x = 1 in equation (vi)
\[{{h}^{'}}\left( 1 \right)={{f}^{'}}\left( f\left( 1 \right) \right).{{f}^{'}}\left( 1 \right)\]
\[={{f}^{'}}\left( {{\left( 1 \right)}^{3}}+3\left( 1 \right)+2 \right).{{f}^{'}}\left( 1 \right)\]
\[={{f}^{'}}\left( 6 \right).{{f}^{'}}\left( 1 \right)\]
To get \[{{f}^{'}}\left( 6 \right)\]and \[{{f}^{'}}\left( 1 \right)\], we will put x = 6 and x = 1 in equation (ii)
We get, \[{{h}^{'}}\left( 1 \right)=\left[ 3{{\left( 6 \right)}^{2}}+3 \right].\left[ 3{{\left( 1 \right)}^{2}}+3 \right]\]
\[=\left( 3\times 36+3 \right).\left( 6 \right)\]
\[=\left( 111 \right).6\]
\[=666\]
Therefore we get,
\[\begin{align}
& \Rightarrow {{g}^{'}}\left( 2 \right)=\dfrac{1}{3} \\
& \Rightarrow {{h}^{'}}\left( 1 \right)=666 \\
& \Rightarrow h\left( 0 \right)=16 \\
& \Rightarrow h\left( g\left( 3 \right) \right)=38 \\
\end{align}\]
Hence option (b) and (c) are correct.
Note: Students often write differentiation of \[g\left( f\left( x \right) \right)={{g}^{'}}f\left( x \right)\]and miss the differentiation of \[f\left( x \right)\]which is \[{{f}^{'}}\left( x \right)\]. So they must keep in mind the chain rule and correct differentiation of \[g\left( f\left( x \right) \right)\]is \[{{g}^{'}}f\left( x \right).{{f}^{'}}\left( x \right)\]and similar rules must be followed for all composite functions.
We are given that \[f\left( x \right)={{x}^{3}}+3x+2,\text{ }g\left( f\left( x \right) \right)=x\text{ and }h\left( g\left( g\left( x \right) \right) \right)=x\text{ for }x\in R.\]
Now, we have to find the values of \[{{g}^{'}}\left( 2 \right),{{h}^{'}}\left( 1 \right),h\left( 0 \right)\text{ and }h\left( g\left( 3 \right) \right)\]
We are given that \[g\left( f\left( x \right) \right)=x\]
Now, we will differentiate both sides with respect to x.
Also we know that \[\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}\]
Also, by chain rule, if \[y=f\left( u \right)\text{ and }u=g\left( x \right)\], then
\[\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}\]
Therefore, we get \[{{g}^{'}}\left( f\left( x \right) \right).{{f}^{'}}\left( x \right)=1\]
\[{{g}^{'}}\left( f\left( x \right) \right)=\dfrac{1}{{{f}^{'}}\left( x \right)}....\left( i \right)\]
Also, \[f\left( x \right)={{x}^{3}}+3x+2\]
By differentiating both sides with respect to x,
We get, \[{{f}^{'}}\left( x \right)=3{{x}^{2}}+3....\left( ii \right)\]
Now, to get \[g'\left( 2 \right)\], we put \[f\left( x \right)=2\]in equation (i)
We get, \[{{g}^{'}}\left( 2 \right)=\dfrac{1}{{{f}^{'}}\left( x \right)}....\left( iii \right)\]
Now, for \[f\left( x \right)=2\]
That is \[{{x}^{3}}+3x+2=2\]
We get, \[{{x}^{3}}+3x=0\]
\[x\left( {{x}^{2}}+3 \right)=0\]
As we know that \[{{x}^{2}}\ne -3\], therefore we get x = 0
By putting x = 0 in equation (iii), we get
\[{{g}^{'}}\left( 2 \right)=\dfrac{1}{{{f}^{'}}\left( 0 \right)}\]
To get \[{{f}^{'}}\left( 0 \right)\], we put x = 0 in equation (ii)
We get \[{{f}^{'}}\left( 0 \right)=3\]
Therefore we get, \[{{g}^{'}}\left( 2 \right)=\dfrac{1}{3}\]
Now we are given that \[h\left( g\left( g\left( x \right) \right) \right)=x\]
Here we will replace x by \[f\left( x \right)\],
So we get \[h\left( g\left( g\left( f\left( x \right) \right) \right) \right)=f\left( x \right)\]
We know that \[g\left( f\left( x \right) \right)=x\]
\[h\left( g\left( x \right) \right)=f\left( x \right)....\left( iv \right)\]
Now, again we will replace x by \[f\left( x \right)\].
So we get, \[h\left( g\left( f\left( x \right) \right) \right)=f\left( f\left( x \right) \right)\]
We know that \[g\left( f\left( x \right) \right)=x\]
So, we get \[h\left( x \right)=f\left( f\left( x \right) \right)....\left( v \right)\]
Now by differentiating both sides,
And by chain rule, if \[y=f\left( u \right)\text{ and }u=g\left( x \right)\]then
\[\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}\]
So, we get \[{{h}^{'}}\left( x \right)={{f}^{'}}\left( f\left( x \right) \right).{{f}^{'}}\left( x \right)....\left( vi \right)\]
Now to get \[h\left( g\left( 3 \right) \right)\], we will first put x = 3 in equation (iv)
So we get \[h\left( g\left( 3 \right) \right)=f\left( 3 \right)\]
Therefore, \[h\left( g\left( 3 \right) \right)={{\left( 3 \right)}^{3}}+3\left( 3 \right)+2=38\]
Now to get \[h\left( 0 \right)\], we will put x = 0 in equation (v)
We get \[h\left( 0 \right)=f\left( f\left( 0 \right) \right)\]
\[\Rightarrow h\left( 0 \right)=f\left( {{\left( 0 \right)}^{3}}+3\left( 0 \right)+2 \right)\]
\[\Rightarrow h\left( 0 \right)=f\left( 2 \right)\]
\[\Rightarrow h\left( 0 \right)={{\left( 2 \right)}^{3}}+3\left( 2 \right)+2\]
Therefore, we get \[h\left( 0 \right)=8+6+2=16\]
Now, to get \[{{h}^{'}}\left( 1 \right)\], we will put x = 1 in equation (vi)
\[{{h}^{'}}\left( 1 \right)={{f}^{'}}\left( f\left( 1 \right) \right).{{f}^{'}}\left( 1 \right)\]
\[={{f}^{'}}\left( {{\left( 1 \right)}^{3}}+3\left( 1 \right)+2 \right).{{f}^{'}}\left( 1 \right)\]
\[={{f}^{'}}\left( 6 \right).{{f}^{'}}\left( 1 \right)\]
To get \[{{f}^{'}}\left( 6 \right)\]and \[{{f}^{'}}\left( 1 \right)\], we will put x = 6 and x = 1 in equation (ii)
We get, \[{{h}^{'}}\left( 1 \right)=\left[ 3{{\left( 6 \right)}^{2}}+3 \right].\left[ 3{{\left( 1 \right)}^{2}}+3 \right]\]
\[=\left( 3\times 36+3 \right).\left( 6 \right)\]
\[=\left( 111 \right).6\]
\[=666\]
Therefore we get,
\[\begin{align}
& \Rightarrow {{g}^{'}}\left( 2 \right)=\dfrac{1}{3} \\
& \Rightarrow {{h}^{'}}\left( 1 \right)=666 \\
& \Rightarrow h\left( 0 \right)=16 \\
& \Rightarrow h\left( g\left( 3 \right) \right)=38 \\
\end{align}\]
Hence option (b) and (c) are correct.
Note: Students often write differentiation of \[g\left( f\left( x \right) \right)={{g}^{'}}f\left( x \right)\]and miss the differentiation of \[f\left( x \right)\]which is \[{{f}^{'}}\left( x \right)\]. So they must keep in mind the chain rule and correct differentiation of \[g\left( f\left( x \right) \right)\]is \[{{g}^{'}}f\left( x \right).{{f}^{'}}\left( x \right)\]and similar rules must be followed for all composite functions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

