Let $f:R-\left\{ \dfrac{3}{5} \right\}\to R$ be defined by $f(x)=\dfrac{3x+2}{5x-3}$ . Then,which of the following options are correct?.
A. ${{f}^{-1}}(x)=f(x)$
B. ${{f}^{-1}}(x)=-f(x)$
C. $fof(x)=-x$
D. ${{f}^{-1}}(x)=\dfrac{1}{19}f(x)$
Answer
361.5k+ views
Hint: To find an inverse function such as f(x) we have the following method: Express x in terms of f(x) and then replace x with g(x) and f(x) with x. The resultant function g(x) will be the inverse of the function f(x) then we check which of the options are correct.
“Complete step-by-step answer:”
We have the function $f(x)=\dfrac{3x+2}{5x-3}$ . First of all let us express x in terms of f(x). For that we have,
$f(x)[5x-3]=3x+2$
Multiplying f(x) we have,
$5xf(x)-3f(x)=3x+2$
Taking 3x in LHS and -3f(x) in RHS we have,
$5xf(x)-3x=3f(x)+2$
Taking x common from the terms in LHS we have,
$x(5f(x)-3)=3f(x)+2$
Dividing both sides with coefficient of x we have,
$x=\dfrac{3f(x)+2}{5f(x)-3}$
Now replacing x with g(x) and f(x) with x we have,
$g(x)=\dfrac{3x+2}{5x-3}$
This function g(x) is the inverse of the function f(x). Hence, we can write ${{f}^{-1}}(x)=\dfrac{3x+2}{5x-3}$ .
We had $f(x)=\dfrac{3x+2}{5x-3}$ and ${{f}^{-1}}(x)=\dfrac{3x+2}{5x-3}$ . Therefore $f(x)={{f}^{-1}}(x)$ .
Hence, option A is the correct answer.
Note: We should know that the inverse of a function is a mirror image of the function about the line $y=x$ means if we were to plot the graph of a function and its inverse we will find that they are mirror image of each other about the line $y=x$ .
This the graph of the function $f(x)=\dfrac{3x+2}{5x-3}$ . As we can see the function is perfectly symmetric and if we were to draw the mirror image it would again give the same function.
“Complete step-by-step answer:”
We have the function $f(x)=\dfrac{3x+2}{5x-3}$ . First of all let us express x in terms of f(x). For that we have,
$f(x)[5x-3]=3x+2$
Multiplying f(x) we have,
$5xf(x)-3f(x)=3x+2$
Taking 3x in LHS and -3f(x) in RHS we have,
$5xf(x)-3x=3f(x)+2$
Taking x common from the terms in LHS we have,
$x(5f(x)-3)=3f(x)+2$
Dividing both sides with coefficient of x we have,
$x=\dfrac{3f(x)+2}{5f(x)-3}$
Now replacing x with g(x) and f(x) with x we have,
$g(x)=\dfrac{3x+2}{5x-3}$
This function g(x) is the inverse of the function f(x). Hence, we can write ${{f}^{-1}}(x)=\dfrac{3x+2}{5x-3}$ .
We had $f(x)=\dfrac{3x+2}{5x-3}$ and ${{f}^{-1}}(x)=\dfrac{3x+2}{5x-3}$ . Therefore $f(x)={{f}^{-1}}(x)$ .
Hence, option A is the correct answer.
Note: We should know that the inverse of a function is a mirror image of the function about the line $y=x$ means if we were to plot the graph of a function and its inverse we will find that they are mirror image of each other about the line $y=x$ .

This the graph of the function $f(x)=\dfrac{3x+2}{5x-3}$ . As we can see the function is perfectly symmetric and if we were to draw the mirror image it would again give the same function.
Last updated date: 02nd Oct 2023
•
Total views: 361.5k
•
Views today: 7.61k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE
