Let $f:R \to R{\text{ and g : R}} \to {\text{R}}$be defined by $f(x) = {x^2}{\text{ and g(x) = x + 1}}$.Show that $f(g(x)) \ne g(f(x))$
Last updated date: 25th Mar 2023
•
Total views: 311.7k
•
Views today: 7.90k
Answer
311.7k+ views
Hint: Find the composition of one function in terms of another function.
Now $f(x)$and $g(x)$is given to us such that $f(x) = {x^2}{\text{ and g(x) = x + 1}}$
Now $f:R \to R{\text{ and g : R}} \to {\text{R}}$is given as it means that the domain of f is R and so as the range, similarly the domain of g is R and its range is also R.
We have to show that $f(g(x)) \ne g(f(x))$
So let’s first compute $f(g(x))$
$ \Rightarrow f(x + 1)$
$ \Rightarrow {(x + 1)^2}$……………………………………….. (1)
Now let’s compute $g(f(x))$
$ \Rightarrow g({x^2})$
$ \Rightarrow {x^2} + 1$…………………………………………. (2)
Clearly equation 1 is not equal to equation 2 as ${(x + 1)^2} \ne {x^2} + 1$
Hence $f(g(x)) \ne g(f(x))$ proved.
Note: Whenever we come across such problems the only key concept that will be involved is how to find the composition of one function into another and it’s been explained above. Some questions may involve some tricky parts as they may not be having the same domain and range, so pay special attention to this part before solving.
Now $f(x)$and $g(x)$is given to us such that $f(x) = {x^2}{\text{ and g(x) = x + 1}}$
Now $f:R \to R{\text{ and g : R}} \to {\text{R}}$is given as it means that the domain of f is R and so as the range, similarly the domain of g is R and its range is also R.
We have to show that $f(g(x)) \ne g(f(x))$
So let’s first compute $f(g(x))$
$ \Rightarrow f(x + 1)$
$ \Rightarrow {(x + 1)^2}$……………………………………….. (1)
Now let’s compute $g(f(x))$
$ \Rightarrow g({x^2})$
$ \Rightarrow {x^2} + 1$…………………………………………. (2)
Clearly equation 1 is not equal to equation 2 as ${(x + 1)^2} \ne {x^2} + 1$
Hence $f(g(x)) \ne g(f(x))$ proved.
Note: Whenever we come across such problems the only key concept that will be involved is how to find the composition of one function into another and it’s been explained above. Some questions may involve some tricky parts as they may not be having the same domain and range, so pay special attention to this part before solving.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
