Answer
Verified
467.4k+ views
Hint: If the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] , the function is said to be continuous at \[x=a\]. A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
Complete step-by-step answer:
The given function is \[f\left( x \right)=\left\{ \begin{align}
& 1-\sqrt{1-{{x}^{2}}}\text{ for }-1\le x\le 1 \\
& 1+\log \dfrac{1}{x}\text{ for }x>1 \\
\end{align} \right.\]
We will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
First , we will check the differentiability of the function \[f\left( x \right)\] at \[x=1\].
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right)-\left( 1-\sqrt{1-{{1}^{2}}} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1-\sqrt{1-1+2h-{{h}^{2}}}-1}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sqrt{2h-{{h}^{2}}}}{-h}\]
Now , on substituting \[h=0\] in the limit , we can see that it gives an indeterminate value \[\dfrac{0}{0}\]. In such conditions, we apply L’ Hopital’s rule to evaluate the limit.
L’ Hopital’s Rule states that “ if \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\] and \[f(x)=g(x)=0\] or \[\infty \], then \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}\] .”
So , to find the value of the limit , we must differentiate the numerator and the denominator with respect to \[x\].
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{2\sqrt{2h-{{h}^{2}}}}.2-2h}{-1}\]
\[=\dfrac{2}{0}=\infty \]
The right-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-\left( 1+\log 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-1-0}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\log \dfrac{1}{\left( 1+h \right)}}{h}\]
Applying L’ Hopital’s Rule , we get
\[\begin{align}
& {{R}^{'}}=\dfrac{\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1}{\dfrac{1}{1+h}}\times \dfrac{-1}{{{(1+h)}^{2}}}}{1} \\
& =-1 \\
\end{align}\]
Since the left hand derivative is not equal to the right hand derivative, hence , the function is not differentiable at \[x=1\].
Now, we will check the continuity of the function at \[x=1\].
A function is said to be continuous at \[x=a\] if the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] .
The right-hand limit of \[f\left( x \right)\]at \[x=1\] is given by
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1+\log \dfrac{1}{1+h} \right)\]
\[\begin{align}
& =1+0 \\
& =1 \\
\end{align}\]
The left-hand limit of \[f\left( x \right)\]at \[x=1\]is given by
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right) \\
& =1 \\
\end{align}\]
Value of function at \[x=1\]is given as
\[\begin{align}
& f\left( 1 \right)=1-\sqrt{1-{{1}^{2}}} \\
& =1 \\
\end{align}\]
Clearly , left hand limit \[=\]right hand limit\[=f\left( 1 \right)\]
So , the function is continuous at \[x=1\].
Now , in the interval \[\left( 0,1 \right)\], \[f\left( x \right)=1-\sqrt{1-{{x}^{2}}}\]. On differentiating \[f(x)\] with respect to \[x\] , we get
\[\dfrac{d}{dx}(f(x))=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\times (-2x)\]
\[=\dfrac{x}{\sqrt{1-{{x}^{2}}}}\]
Clearly , \[f'(x)\] exists \[\forall x\in (-1,1)\]. Hence , \[{{f}^{'}}\left( x \right)\]exists for all \[x\in \left( 0,1 \right)\].
Answer is (a),(b),(d)
Note: If a function is differentiable at a, it should necessarily be continuous. But if a function is continuous, it is not necessary that it is differentiable at \[x=a\].
Complete step-by-step answer:
The given function is \[f\left( x \right)=\left\{ \begin{align}
& 1-\sqrt{1-{{x}^{2}}}\text{ for }-1\le x\le 1 \\
& 1+\log \dfrac{1}{x}\text{ for }x>1 \\
\end{align} \right.\]
We will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
First , we will check the differentiability of the function \[f\left( x \right)\] at \[x=1\].
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right)-\left( 1-\sqrt{1-{{1}^{2}}} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1-\sqrt{1-1+2h-{{h}^{2}}}-1}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sqrt{2h-{{h}^{2}}}}{-h}\]
Now , on substituting \[h=0\] in the limit , we can see that it gives an indeterminate value \[\dfrac{0}{0}\]. In such conditions, we apply L’ Hopital’s rule to evaluate the limit.
L’ Hopital’s Rule states that “ if \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\] and \[f(x)=g(x)=0\] or \[\infty \], then \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}\] .”
So , to find the value of the limit , we must differentiate the numerator and the denominator with respect to \[x\].
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{2\sqrt{2h-{{h}^{2}}}}.2-2h}{-1}\]
\[=\dfrac{2}{0}=\infty \]
The right-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-\left( 1+\log 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-1-0}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\log \dfrac{1}{\left( 1+h \right)}}{h}\]
Applying L’ Hopital’s Rule , we get
\[\begin{align}
& {{R}^{'}}=\dfrac{\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1}{\dfrac{1}{1+h}}\times \dfrac{-1}{{{(1+h)}^{2}}}}{1} \\
& =-1 \\
\end{align}\]
Since the left hand derivative is not equal to the right hand derivative, hence , the function is not differentiable at \[x=1\].
Now, we will check the continuity of the function at \[x=1\].
A function is said to be continuous at \[x=a\] if the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] .
The right-hand limit of \[f\left( x \right)\]at \[x=1\] is given by
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1+\log \dfrac{1}{1+h} \right)\]
\[\begin{align}
& =1+0 \\
& =1 \\
\end{align}\]
The left-hand limit of \[f\left( x \right)\]at \[x=1\]is given by
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right) \\
& =1 \\
\end{align}\]
Value of function at \[x=1\]is given as
\[\begin{align}
& f\left( 1 \right)=1-\sqrt{1-{{1}^{2}}} \\
& =1 \\
\end{align}\]
Clearly , left hand limit \[=\]right hand limit\[=f\left( 1 \right)\]
So , the function is continuous at \[x=1\].
Now , in the interval \[\left( 0,1 \right)\], \[f\left( x \right)=1-\sqrt{1-{{x}^{2}}}\]. On differentiating \[f(x)\] with respect to \[x\] , we get
\[\dfrac{d}{dx}(f(x))=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\times (-2x)\]
\[=\dfrac{x}{\sqrt{1-{{x}^{2}}}}\]
Clearly , \[f'(x)\] exists \[\forall x\in (-1,1)\]. Hence , \[{{f}^{'}}\left( x \right)\]exists for all \[x\in \left( 0,1 \right)\].
Answer is (a),(b),(d)
Note: If a function is differentiable at a, it should necessarily be continuous. But if a function is continuous, it is not necessary that it is differentiable at \[x=a\].
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations