
Let \[f\left( x \right)=\left\{ \begin{align}
& 1-\sqrt{1-{{x}^{2}}}\text{ for }-1\le x\le 1 \\
& 1+\log \dfrac{1}{x}\text{ for }x>1 \\
\end{align} \right.\]
Then
(a) \[f\]is continuous at \[x=1\]
(b) \[f\]is not differentiable at \[x=1\]
(c) \[f\]is continuous and differentiable at \[x=1\]
(d) \[{{f}^{'}}\left( x \right)\]exists for all \[x\in \left( 0,1 \right)\]
Answer
608.1k+ views
Hint: If the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] , the function is said to be continuous at \[x=a\]. A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
Complete step-by-step answer:
The given function is \[f\left( x \right)=\left\{ \begin{align}
& 1-\sqrt{1-{{x}^{2}}}\text{ for }-1\le x\le 1 \\
& 1+\log \dfrac{1}{x}\text{ for }x>1 \\
\end{align} \right.\]
We will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
First , we will check the differentiability of the function \[f\left( x \right)\] at \[x=1\].
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right)-\left( 1-\sqrt{1-{{1}^{2}}} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1-\sqrt{1-1+2h-{{h}^{2}}}-1}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sqrt{2h-{{h}^{2}}}}{-h}\]
Now , on substituting \[h=0\] in the limit , we can see that it gives an indeterminate value \[\dfrac{0}{0}\]. In such conditions, we apply L’ Hopital’s rule to evaluate the limit.
L’ Hopital’s Rule states that “ if \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\] and \[f(x)=g(x)=0\] or \[\infty \], then \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}\] .”
So , to find the value of the limit , we must differentiate the numerator and the denominator with respect to \[x\].
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{2\sqrt{2h-{{h}^{2}}}}.2-2h}{-1}\]
\[=\dfrac{2}{0}=\infty \]
The right-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-\left( 1+\log 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-1-0}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\log \dfrac{1}{\left( 1+h \right)}}{h}\]
Applying L’ Hopital’s Rule , we get
\[\begin{align}
& {{R}^{'}}=\dfrac{\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1}{\dfrac{1}{1+h}}\times \dfrac{-1}{{{(1+h)}^{2}}}}{1} \\
& =-1 \\
\end{align}\]
Since the left hand derivative is not equal to the right hand derivative, hence , the function is not differentiable at \[x=1\].
Now, we will check the continuity of the function at \[x=1\].
A function is said to be continuous at \[x=a\] if the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] .
The right-hand limit of \[f\left( x \right)\]at \[x=1\] is given by
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1+\log \dfrac{1}{1+h} \right)\]
\[\begin{align}
& =1+0 \\
& =1 \\
\end{align}\]
The left-hand limit of \[f\left( x \right)\]at \[x=1\]is given by
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right) \\
& =1 \\
\end{align}\]
Value of function at \[x=1\]is given as
\[\begin{align}
& f\left( 1 \right)=1-\sqrt{1-{{1}^{2}}} \\
& =1 \\
\end{align}\]
Clearly , left hand limit \[=\]right hand limit\[=f\left( 1 \right)\]
So , the function is continuous at \[x=1\].
Now , in the interval \[\left( 0,1 \right)\], \[f\left( x \right)=1-\sqrt{1-{{x}^{2}}}\]. On differentiating \[f(x)\] with respect to \[x\] , we get
\[\dfrac{d}{dx}(f(x))=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\times (-2x)\]
\[=\dfrac{x}{\sqrt{1-{{x}^{2}}}}\]
Clearly , \[f'(x)\] exists \[\forall x\in (-1,1)\]. Hence , \[{{f}^{'}}\left( x \right)\]exists for all \[x\in \left( 0,1 \right)\].
Answer is (a),(b),(d)
Note: If a function is differentiable at a, it should necessarily be continuous. But if a function is continuous, it is not necessary that it is differentiable at \[x=a\].
Complete step-by-step answer:
The given function is \[f\left( x \right)=\left\{ \begin{align}
& 1-\sqrt{1-{{x}^{2}}}\text{ for }-1\le x\le 1 \\
& 1+\log \dfrac{1}{x}\text{ for }x>1 \\
\end{align} \right.\]
We will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
First , we will check the differentiability of the function \[f\left( x \right)\] at \[x=1\].
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right)-\left( 1-\sqrt{1-{{1}^{2}}} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1-\sqrt{1-1+2h-{{h}^{2}}}-1}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sqrt{2h-{{h}^{2}}}}{-h}\]
Now , on substituting \[h=0\] in the limit , we can see that it gives an indeterminate value \[\dfrac{0}{0}\]. In such conditions, we apply L’ Hopital’s rule to evaluate the limit.
L’ Hopital’s Rule states that “ if \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\] and \[f(x)=g(x)=0\] or \[\infty \], then \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}\] .”
So , to find the value of the limit , we must differentiate the numerator and the denominator with respect to \[x\].
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{2\sqrt{2h-{{h}^{2}}}}.2-2h}{-1}\]
\[=\dfrac{2}{0}=\infty \]
The right-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-\left( 1+\log 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-1-0}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\log \dfrac{1}{\left( 1+h \right)}}{h}\]
Applying L’ Hopital’s Rule , we get
\[\begin{align}
& {{R}^{'}}=\dfrac{\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1}{\dfrac{1}{1+h}}\times \dfrac{-1}{{{(1+h)}^{2}}}}{1} \\
& =-1 \\
\end{align}\]
Since the left hand derivative is not equal to the right hand derivative, hence , the function is not differentiable at \[x=1\].
Now, we will check the continuity of the function at \[x=1\].
A function is said to be continuous at \[x=a\] if the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] .
The right-hand limit of \[f\left( x \right)\]at \[x=1\] is given by
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1+\log \dfrac{1}{1+h} \right)\]
\[\begin{align}
& =1+0 \\
& =1 \\
\end{align}\]
The left-hand limit of \[f\left( x \right)\]at \[x=1\]is given by
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right) \\
& =1 \\
\end{align}\]
Value of function at \[x=1\]is given as
\[\begin{align}
& f\left( 1 \right)=1-\sqrt{1-{{1}^{2}}} \\
& =1 \\
\end{align}\]
Clearly , left hand limit \[=\]right hand limit\[=f\left( 1 \right)\]
So , the function is continuous at \[x=1\].
Now , in the interval \[\left( 0,1 \right)\], \[f\left( x \right)=1-\sqrt{1-{{x}^{2}}}\]. On differentiating \[f(x)\] with respect to \[x\] , we get
\[\dfrac{d}{dx}(f(x))=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\times (-2x)\]
\[=\dfrac{x}{\sqrt{1-{{x}^{2}}}}\]
Clearly , \[f'(x)\] exists \[\forall x\in (-1,1)\]. Hence , \[{{f}^{'}}\left( x \right)\]exists for all \[x\in \left( 0,1 \right)\].
Answer is (a),(b),(d)
Note: If a function is differentiable at a, it should necessarily be continuous. But if a function is continuous, it is not necessary that it is differentiable at \[x=a\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

