Let \[f\left( x \right)=\left\{ \begin{align}
& 1-\sqrt{1-{{x}^{2}}}\text{ for }-1\le x\le 1 \\
& 1+\log \dfrac{1}{x}\text{ for }x>1 \\
\end{align} \right.\]
Then
(a) \[f\]is continuous at \[x=1\]
(b) \[f\]is not differentiable at \[x=1\]
(c) \[f\]is continuous and differentiable at \[x=1\]
(d) \[{{f}^{'}}\left( x \right)\]exists for all \[x\in \left( 0,1 \right)\]
Answer
Verified
507.6k+ views
Hint: If the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] , the function is said to be continuous at \[x=a\]. A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
Complete step-by-step answer:
The given function is \[f\left( x \right)=\left\{ \begin{align}
& 1-\sqrt{1-{{x}^{2}}}\text{ for }-1\le x\le 1 \\
& 1+\log \dfrac{1}{x}\text{ for }x>1 \\
\end{align} \right.\]
We will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
First , we will check the differentiability of the function \[f\left( x \right)\] at \[x=1\].
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right)-\left( 1-\sqrt{1-{{1}^{2}}} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1-\sqrt{1-1+2h-{{h}^{2}}}-1}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sqrt{2h-{{h}^{2}}}}{-h}\]
Now , on substituting \[h=0\] in the limit , we can see that it gives an indeterminate value \[\dfrac{0}{0}\]. In such conditions, we apply L’ Hopital’s rule to evaluate the limit.
L’ Hopital’s Rule states that “ if \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\] and \[f(x)=g(x)=0\] or \[\infty \], then \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}\] .”
So , to find the value of the limit , we must differentiate the numerator and the denominator with respect to \[x\].
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{2\sqrt{2h-{{h}^{2}}}}.2-2h}{-1}\]
\[=\dfrac{2}{0}=\infty \]
The right-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-\left( 1+\log 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-1-0}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\log \dfrac{1}{\left( 1+h \right)}}{h}\]
Applying L’ Hopital’s Rule , we get
\[\begin{align}
& {{R}^{'}}=\dfrac{\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1}{\dfrac{1}{1+h}}\times \dfrac{-1}{{{(1+h)}^{2}}}}{1} \\
& =-1 \\
\end{align}\]
Since the left hand derivative is not equal to the right hand derivative, hence , the function is not differentiable at \[x=1\].
Now, we will check the continuity of the function at \[x=1\].
A function is said to be continuous at \[x=a\] if the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] .
The right-hand limit of \[f\left( x \right)\]at \[x=1\] is given by
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1+\log \dfrac{1}{1+h} \right)\]
\[\begin{align}
& =1+0 \\
& =1 \\
\end{align}\]
The left-hand limit of \[f\left( x \right)\]at \[x=1\]is given by
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right) \\
& =1 \\
\end{align}\]
Value of function at \[x=1\]is given as
\[\begin{align}
& f\left( 1 \right)=1-\sqrt{1-{{1}^{2}}} \\
& =1 \\
\end{align}\]
Clearly , left hand limit \[=\]right hand limit\[=f\left( 1 \right)\]
So , the function is continuous at \[x=1\].
Now , in the interval \[\left( 0,1 \right)\], \[f\left( x \right)=1-\sqrt{1-{{x}^{2}}}\]. On differentiating \[f(x)\] with respect to \[x\] , we get
\[\dfrac{d}{dx}(f(x))=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\times (-2x)\]
\[=\dfrac{x}{\sqrt{1-{{x}^{2}}}}\]
Clearly , \[f'(x)\] exists \[\forall x\in (-1,1)\]. Hence , \[{{f}^{'}}\left( x \right)\]exists for all \[x\in \left( 0,1 \right)\].
Answer is (a),(b),(d)
Note: If a function is differentiable at a, it should necessarily be continuous. But if a function is continuous, it is not necessary that it is differentiable at \[x=a\].
Complete step-by-step answer:
The given function is \[f\left( x \right)=\left\{ \begin{align}
& 1-\sqrt{1-{{x}^{2}}}\text{ for }-1\le x\le 1 \\
& 1+\log \dfrac{1}{x}\text{ for }x>1 \\
\end{align} \right.\]
We will check if the function is continuous or differentiable at critical points of the function .
A function is differentiable at \[x=a\] , if the left-hand derivative of the function is equal to the right hand derivative of the function at \[x=a\].
We know , the left hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a-h \right)-f\left( a \right)}{-h}\] and the right hand derivative of \[f\left( x \right)\] at \[x=a\] is given as \[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( a+h \right)-f\left( a \right)}{h}\].
First , we will check the differentiability of the function \[f\left( x \right)\] at \[x=1\].
The left-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1-h \right)-f\left( 1 \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right)-\left( 1-\sqrt{1-{{1}^{2}}} \right)}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1-\sqrt{1-1+2h-{{h}^{2}}}-1}{-h}\]
\[=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{-\sqrt{2h-{{h}^{2}}}}{-h}\]
Now , on substituting \[h=0\] in the limit , we can see that it gives an indeterminate value \[\dfrac{0}{0}\]. In such conditions, we apply L’ Hopital’s rule to evaluate the limit.
L’ Hopital’s Rule states that “ if \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}\] and \[f(x)=g(x)=0\] or \[\infty \], then \[L=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}\] .”
So , to find the value of the limit , we must differentiate the numerator and the denominator with respect to \[x\].
\[{{L}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\dfrac{-1}{2\sqrt{2h-{{h}^{2}}}}.2-2h}{-1}\]
\[=\dfrac{2}{0}=\infty \]
The right-hand derivative of \[f\left( x \right)\]at \[x=1\]is given by
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-\left( 1+\log 1 \right)}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1+\log \dfrac{1}{\left( 1+h \right)}-1-0}{h}\]
\[{{R}^{'}}=\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\log \dfrac{1}{\left( 1+h \right)}}{h}\]
Applying L’ Hopital’s Rule , we get
\[\begin{align}
& {{R}^{'}}=\dfrac{\underset{h\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{1}{\dfrac{1}{1+h}}\times \dfrac{-1}{{{(1+h)}^{2}}}}{1} \\
& =-1 \\
\end{align}\]
Since the left hand derivative is not equal to the right hand derivative, hence , the function is not differentiable at \[x=1\].
Now, we will check the continuity of the function at \[x=1\].
A function is said to be continuous at \[x=a\] if the value of limit of the function at a point \[x=a\] is equal to the value of the function at \[x=a\] .
The right-hand limit of \[f\left( x \right)\]at \[x=1\] is given by
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1+\log \dfrac{1}{1+h} \right)\]
\[\begin{align}
& =1+0 \\
& =1 \\
\end{align}\]
The left-hand limit of \[f\left( x \right)\]at \[x=1\]is given by
\[\begin{align}
& \underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1-\sqrt{1-{{\left( 1-h \right)}^{2}}} \right) \\
& =1 \\
\end{align}\]
Value of function at \[x=1\]is given as
\[\begin{align}
& f\left( 1 \right)=1-\sqrt{1-{{1}^{2}}} \\
& =1 \\
\end{align}\]
Clearly , left hand limit \[=\]right hand limit\[=f\left( 1 \right)\]
So , the function is continuous at \[x=1\].
Now , in the interval \[\left( 0,1 \right)\], \[f\left( x \right)=1-\sqrt{1-{{x}^{2}}}\]. On differentiating \[f(x)\] with respect to \[x\] , we get
\[\dfrac{d}{dx}(f(x))=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\times (-2x)\]
\[=\dfrac{x}{\sqrt{1-{{x}^{2}}}}\]
Clearly , \[f'(x)\] exists \[\forall x\in (-1,1)\]. Hence , \[{{f}^{'}}\left( x \right)\]exists for all \[x\in \left( 0,1 \right)\].
Answer is (a),(b),(d)
Note: If a function is differentiable at a, it should necessarily be continuous. But if a function is continuous, it is not necessary that it is differentiable at \[x=a\].
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Distinguish between asexual and sexual reproduction class 12 biology CBSE
How do you convert from joules to electron volts class 12 physics CBSE
Derive mirror equation State any three experimental class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE