# Let \[f\], \[g\] and \[h\] are differentiable functions. If \[f\left( 0 \right) = 1\]; \[g\left( 0 \right) = 2\]; \[h\left( 0 \right) = 3\] and the derivative of their pairwise products at \[x = 0\] are \[\left( {fg} \right)'\left( 0 \right) = 6\]; \[\left( {gh} \right)'\left( 0 \right) = 4\] and \[\left( {hf} \right)'\left( 0 \right) = 5\] then compute the value of \[\left( {fgh} \right)'\left( 0 \right)\].

A.12

B.15

C.16

D.None of these

Answer

Verified

178.2k+ views

**Hint:**Here we will first differentiate the function \[fgh\] using the formula of differentiation. Then we will modify the equation such that we get the equation in terms of the values given in the question. Then we will put their values in the equation and solve it to get the final value of \[\left( {fgh} \right)'\left( 0 \right)\].

**Formula used:**

We will use the following formulas:

1. \[\dfrac{d}{{dx}}\left( {uv} \right) = uv' + u'v\]

2.\[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{vu' - uv'}}{{{v^2}}}\]

**Complete step-by-step answer:**Let \[y = fgh\].

Now we will differentiate the function with respect to \[x\]. Therefore, we get

\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {fgh} \right)\]

\[ \Rightarrow \dfrac{{dy}}{{dx}} = f'gh + fg'h + fgh'\]

We will write the above equation in modified form to solve the equation with the given values. Therefore, we get

\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\left( {2f'gh + 2fg'h + 2fgh'} \right)\]

We will write the above equation as

\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{2}\left( {h\left( {f'g + fg'} \right) + g\left( {f'h + fh'} \right) + f\left( {g'h + gh'} \right)} \right)\]

Using the differentiation property, we get

\[ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {fgh} \right)' = \dfrac{1}{2}\left( {h\left( {fg} \right)' + g\left( {fh} \right)' + f\left( {gh} \right)'} \right)\]

Now we have to find the value of \[\left( {fgh} \right)'\left( 0 \right)\].

Therefore, we get

\[ \Rightarrow \left( {fgh} \right)'\left( 0 \right) = \dfrac{1}{2}\left( {h\left( 0 \right)\left( {fg} \right)'\left( 0 \right) + g\left( 0 \right)\left( {fh} \right)'\left( 0 \right) + f\left( 0 \right)\left( {gh} \right)'\left( 0 \right)} \right)\]

Substituting \[f\left( 0 \right) = 1\], \[g\left( 0 \right) = 2\], \[h\left( 0 \right) = 3\], \[\left( {fg} \right)'\left( 0 \right) = 6\], \[\left( {gh} \right)'\left( 0 \right) = 4\] and \[\left( {hf} \right)'\left( 0 \right) = 5\] in the above equation, we get

\[ \Rightarrow \left( {fgh} \right)'\left( 0 \right) = \dfrac{1}{2}\left( {3 \times 6 + 2 \times 5 + 1 \times 4} \right)\]

Multiplying the terms, we get

\[ \Rightarrow \left( {fgh} \right)'\left( 0 \right) = \dfrac{1}{2}\left( {18 + 10 + 4} \right)\]

Adding the terms, we get

\[ \Rightarrow \left( {fgh} \right)'\left( 0 \right) = \dfrac{{32}}{2}\]

Dividing 32 by 2, we get

\[ \Rightarrow \left( {fgh} \right)'\left( 0 \right) = 16\]

Hence, the value of \[\left( {fgh} \right)'\left( 0 \right)\] is equal to 16.

**So, option C is the correct option.**

**Note:**A differentiable function may be defined as a function whose derivative exists at every point in its range of domain. We should remember that a differentiable function is always continuous but the converse is not true which means a function may be continuous but not always differentiable. In this type of question we should simplify the equation in terms of the values given in the question.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?