Answer
Verified
491.7k+ views
Hint: Use the two given probabilities to make two equations. Then, using the formula $P\left( E\cup F \right)=P\left( E \right)+P\left( F \right)-P\left( E\cap F \right)$ and $P\left( E\cap F \right)=P\left( E \right)\cdot P\left( F \right)$, make two equations and solve them to find the values of $P\left( E \right)$ and $P\left( F \right)$.
“Complete step-by-step answer:”
We know the following facts:
1. The probability that two events A and B happen together is given as $P\left( A\cap B \right)$
2. The probability that at least one of the two events A and B happens is given as $P\left( A\cup B \right)$
3. The probability that an event E does not happen is given as $1-P\left( E \right)$, if $P\left( E \right)$ is the probability that the event A happens.
Applying the above facts to the statements given in the question:
Probability that E and F happen together is $\dfrac{1}{12}$, which can be written as $P\left( E\cap F \right)=\dfrac{1}{12}$
The second statement, probability that neither E nor F happen can be understood as the negation of the event that at least one of them happens.
The probability that at least one of E or F happens is given as $P\left( E\cup F \right)$.
Hence, the probability of neither E nor F happens is given as $1-P\left( E\cup F \right)=\dfrac{1}{2}$. Upon rearranging,
$\begin{align}
& \Rightarrow P\left( E\cup F \right)=1-\dfrac{1}{2} \\
& \Rightarrow P\left( E\cup F \right)=\dfrac{1}{2} \\
\end{align}$
Thus, we have two results $P\left( E\cap F \right)=\dfrac{1}{12}$ and $P\left( E\cup F \right)=\dfrac{1}{2}$.
We know that $P\left( E\cup F \right)=P\left( E \right)+P\left( F \right)-P\left( E\cap F \right)$.
Substituting the value of $P\left( E\cup F \right)$ and $P\left( E\cap F \right)$ in the above formula, we get
\[\begin{align}
& \dfrac{1}{2}=P\left( E \right)+P\left( F \right)-\dfrac{1}{12} \\
& \Rightarrow P\left( E \right)+P\left( F \right)=\dfrac{1}{2}+\dfrac{1}{12} \\
& \Rightarrow P\left( E \right)+P\left( F \right)=\dfrac{7}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right) \\
\end{align}\]
Also, since the events E and F are independent, $P\left( E\cap F \right)=P\left( E \right)\cdot P\left( F \right)$
Thus, $P\left( E \right)\cdot P\left( F \right)=\dfrac{1}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right)$
To solve the equations (1) and (2) to find $P\left( E \right)$ and $P\left( F \right)$, we can use the relation $a-b=\sqrt{{{\left( a+b \right)}^{2}}-4ab}$
In this equation, $a=P\left( E \right)$ and $b=P\left( F \right)$
\[\mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}={{\left( P\left( E \right)+P\left( F \right) \right)}^{2}}-4P\left( E \right)\cdot P\left( F \right)\]
Substituting values from equations (1) and (2),
\[\begin{align}
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}={{\left( \dfrac{7}{12} \right)}^{2}}-4\left( \dfrac{1}{12} \right) \\
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}=\left( \dfrac{49}{144} \right)-\left( \dfrac{1}{3} \right) \\
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}=\dfrac{1}{144} \\
& \Rightarrow P\left( E \right)-P\left( F \right)=\dfrac{1}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 3 \right) \\
\end{align}\]
Adding equations (1) and (3),
\[2\cdot P\left( E \right)=\dfrac{8}{12}\]
\[\Rightarrow P\left( E \right)=\dfrac{4}{12}=\dfrac{1}{3}\]
Subtracting equation (3) from equation (1), we get
\[2\cdot P\left( F \right)=\dfrac{6}{12}\]
\[\Rightarrow P\left( F \right)=\dfrac{3}{12}=\dfrac{1}{4}\]
Thus, the required value, $\dfrac{P\left( E \right)}{P\left( F \right)}=\dfrac{\dfrac{1}{3}}{\dfrac{1}{4}}=\dfrac{4}{3}$
Therefore, the correct answer is option (d).
Note: The formula used here, $P\left( E\cap F \right)=P\left( E \right)\cdot P\left( F \right)$ is only valid if the two events E and F are independent of each other (given in the question). Otherwise this formula is not applicable, and then using this formula would result in an incorrect answer.
“Complete step-by-step answer:”
We know the following facts:
1. The probability that two events A and B happen together is given as $P\left( A\cap B \right)$
2. The probability that at least one of the two events A and B happens is given as $P\left( A\cup B \right)$
3. The probability that an event E does not happen is given as $1-P\left( E \right)$, if $P\left( E \right)$ is the probability that the event A happens.
Applying the above facts to the statements given in the question:
Probability that E and F happen together is $\dfrac{1}{12}$, which can be written as $P\left( E\cap F \right)=\dfrac{1}{12}$
The second statement, probability that neither E nor F happen can be understood as the negation of the event that at least one of them happens.
The probability that at least one of E or F happens is given as $P\left( E\cup F \right)$.
Hence, the probability of neither E nor F happens is given as $1-P\left( E\cup F \right)=\dfrac{1}{2}$. Upon rearranging,
$\begin{align}
& \Rightarrow P\left( E\cup F \right)=1-\dfrac{1}{2} \\
& \Rightarrow P\left( E\cup F \right)=\dfrac{1}{2} \\
\end{align}$
Thus, we have two results $P\left( E\cap F \right)=\dfrac{1}{12}$ and $P\left( E\cup F \right)=\dfrac{1}{2}$.
We know that $P\left( E\cup F \right)=P\left( E \right)+P\left( F \right)-P\left( E\cap F \right)$.
Substituting the value of $P\left( E\cup F \right)$ and $P\left( E\cap F \right)$ in the above formula, we get
\[\begin{align}
& \dfrac{1}{2}=P\left( E \right)+P\left( F \right)-\dfrac{1}{12} \\
& \Rightarrow P\left( E \right)+P\left( F \right)=\dfrac{1}{2}+\dfrac{1}{12} \\
& \Rightarrow P\left( E \right)+P\left( F \right)=\dfrac{7}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 1 \right) \\
\end{align}\]
Also, since the events E and F are independent, $P\left( E\cap F \right)=P\left( E \right)\cdot P\left( F \right)$
Thus, $P\left( E \right)\cdot P\left( F \right)=\dfrac{1}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 2 \right)$
To solve the equations (1) and (2) to find $P\left( E \right)$ and $P\left( F \right)$, we can use the relation $a-b=\sqrt{{{\left( a+b \right)}^{2}}-4ab}$
In this equation, $a=P\left( E \right)$ and $b=P\left( F \right)$
\[\mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}={{\left( P\left( E \right)+P\left( F \right) \right)}^{2}}-4P\left( E \right)\cdot P\left( F \right)\]
Substituting values from equations (1) and (2),
\[\begin{align}
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}={{\left( \dfrac{7}{12} \right)}^{2}}-4\left( \dfrac{1}{12} \right) \\
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}=\left( \dfrac{49}{144} \right)-\left( \dfrac{1}{3} \right) \\
& \Rightarrow \mathop{\left( P\left( E \right)-P\left( F \right) \right)}^{2}=\dfrac{1}{144} \\
& \Rightarrow P\left( E \right)-P\left( F \right)=\dfrac{1}{12}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ldots \left( 3 \right) \\
\end{align}\]
Adding equations (1) and (3),
\[2\cdot P\left( E \right)=\dfrac{8}{12}\]
\[\Rightarrow P\left( E \right)=\dfrac{4}{12}=\dfrac{1}{3}\]
Subtracting equation (3) from equation (1), we get
\[2\cdot P\left( F \right)=\dfrac{6}{12}\]
\[\Rightarrow P\left( F \right)=\dfrac{3}{12}=\dfrac{1}{4}\]
Thus, the required value, $\dfrac{P\left( E \right)}{P\left( F \right)}=\dfrac{\dfrac{1}{3}}{\dfrac{1}{4}}=\dfrac{4}{3}$
Therefore, the correct answer is option (d).
Note: The formula used here, $P\left( E\cap F \right)=P\left( E \right)\cdot P\left( F \right)$ is only valid if the two events E and F are independent of each other (given in the question). Otherwise this formula is not applicable, and then using this formula would result in an incorrect answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE