
Let $A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]\ne \left[ \begin{matrix}
0 \\
0 \\
\end{matrix} \right]$, such that AB=B and a + d = 2, then find the value of $ad-bc$.
Answer
582.9k+ views
Hint: We start solving this problem by first multiplying the matrices A and B. Then we equate the result to matrix B as we are given that AB=B. Then we equate the corresponding elements in the both matrices and then we get two equations with variables p and q. Solving them we get an equation with a, b, c and d. Then by substituting the value of $a+d$ given and solving it we cam find the value of $ad-bc$.
Complete step by step answer:
We are given that $A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]\ne \left[ \begin{matrix}
0 \\
0 \\
\end{matrix} \right]$.
We are also given that AB=B and $a+d=2$.
As we are given that AB=B, let us multiply the matrices A and B and then equate the obtained result to B.
So, let us now consider the product AB.
$\begin{align}
& \Rightarrow AB=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right] \\
& \Rightarrow AB=\left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right] \\
\end{align}$
Now let us equate it to matrix B. Then we get,
$\Rightarrow \left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right]=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]$
So, now let us equate the first element in the both matrices.
\[\begin{align}
& \Rightarrow ap+bq=p \\
& \Rightarrow bq=\left( 1-a \right)p \\
& \Rightarrow q=\dfrac{\left( 1-a \right)p}{b}.........\left( 1 \right) \\
\end{align}\]
Now let us equate the second term in the above matrices. Then we get,
\[\begin{align}
& \Rightarrow cp+dq=q \\
& \Rightarrow \left( 1-d \right)q=cp \\
& \Rightarrow q=\dfrac{cp}{1-d}.........\left( 2 \right) \\
\end{align}\]
Now from equations (1) and (2) we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-a \right)p}{b}=\dfrac{cp}{1-d} \\
& \Rightarrow \left( 1-a \right)\left( 1-d \right)p=bcp \\
& \Rightarrow \left( 1-d-a+ad \right)p=bcp \\
& \Rightarrow \left( 1-\left( d+a \right)+ad-bc \right)p=0 \\
\end{align}\]
As, we are given that $p\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
So, the correct answer is “1”.
Note: We can also solve this question by writing p in terms of q in equations (1) and (2) and then solving it as below.
Writing p in terms of q we get the equations (1) and (2) as,
\[\Rightarrow p=\dfrac{bq}{1-a}.........\left( 3 \right)\]
\[\Rightarrow p=\dfrac{\left( 1-d \right)q}{c}..........\left( 4 \right)\]
Equating them we get,
\[\begin{align}
& \Rightarrow \dfrac{bq}{1-a}=\dfrac{\left( 1-d \right)q}{c} \\
& \Rightarrow cbq=\left( 1-a \right)\left( 1-d \right)q \\
\end{align}\]
\[\begin{align}
& \Rightarrow cbq=\left( 1-a-d+ad \right)q \\
& \Rightarrow \left( 1-a-d+ad-bc \right)q=0 \\
\end{align}\]
As $q\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
Complete step by step answer:
We are given that $A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]\ne \left[ \begin{matrix}
0 \\
0 \\
\end{matrix} \right]$.
We are also given that AB=B and $a+d=2$.
As we are given that AB=B, let us multiply the matrices A and B and then equate the obtained result to B.
So, let us now consider the product AB.
$\begin{align}
& \Rightarrow AB=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right] \\
& \Rightarrow AB=\left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right] \\
\end{align}$
Now let us equate it to matrix B. Then we get,
$\Rightarrow \left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right]=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]$
So, now let us equate the first element in the both matrices.
\[\begin{align}
& \Rightarrow ap+bq=p \\
& \Rightarrow bq=\left( 1-a \right)p \\
& \Rightarrow q=\dfrac{\left( 1-a \right)p}{b}.........\left( 1 \right) \\
\end{align}\]
Now let us equate the second term in the above matrices. Then we get,
\[\begin{align}
& \Rightarrow cp+dq=q \\
& \Rightarrow \left( 1-d \right)q=cp \\
& \Rightarrow q=\dfrac{cp}{1-d}.........\left( 2 \right) \\
\end{align}\]
Now from equations (1) and (2) we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-a \right)p}{b}=\dfrac{cp}{1-d} \\
& \Rightarrow \left( 1-a \right)\left( 1-d \right)p=bcp \\
& \Rightarrow \left( 1-d-a+ad \right)p=bcp \\
& \Rightarrow \left( 1-\left( d+a \right)+ad-bc \right)p=0 \\
\end{align}\]
As, we are given that $p\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
So, the correct answer is “1”.
Note: We can also solve this question by writing p in terms of q in equations (1) and (2) and then solving it as below.
Writing p in terms of q we get the equations (1) and (2) as,
\[\Rightarrow p=\dfrac{bq}{1-a}.........\left( 3 \right)\]
\[\Rightarrow p=\dfrac{\left( 1-d \right)q}{c}..........\left( 4 \right)\]
Equating them we get,
\[\begin{align}
& \Rightarrow \dfrac{bq}{1-a}=\dfrac{\left( 1-d \right)q}{c} \\
& \Rightarrow cbq=\left( 1-a \right)\left( 1-d \right)q \\
\end{align}\]
\[\begin{align}
& \Rightarrow cbq=\left( 1-a-d+ad \right)q \\
& \Rightarrow \left( 1-a-d+ad-bc \right)q=0 \\
\end{align}\]
As $q\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

