Answer
Verified
456.3k+ views
Hint: We start solving this problem by first multiplying the matrices A and B. Then we equate the result to matrix B as we are given that AB=B. Then we equate the corresponding elements in the both matrices and then we get two equations with variables p and q. Solving them we get an equation with a, b, c and d. Then by substituting the value of $a+d$ given and solving it we cam find the value of $ad-bc$.
Complete step by step answer:
We are given that $A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]\ne \left[ \begin{matrix}
0 \\
0 \\
\end{matrix} \right]$.
We are also given that AB=B and $a+d=2$.
As we are given that AB=B, let us multiply the matrices A and B and then equate the obtained result to B.
So, let us now consider the product AB.
$\begin{align}
& \Rightarrow AB=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right] \\
& \Rightarrow AB=\left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right] \\
\end{align}$
Now let us equate it to matrix B. Then we get,
$\Rightarrow \left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right]=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]$
So, now let us equate the first element in the both matrices.
\[\begin{align}
& \Rightarrow ap+bq=p \\
& \Rightarrow bq=\left( 1-a \right)p \\
& \Rightarrow q=\dfrac{\left( 1-a \right)p}{b}.........\left( 1 \right) \\
\end{align}\]
Now let us equate the second term in the above matrices. Then we get,
\[\begin{align}
& \Rightarrow cp+dq=q \\
& \Rightarrow \left( 1-d \right)q=cp \\
& \Rightarrow q=\dfrac{cp}{1-d}.........\left( 2 \right) \\
\end{align}\]
Now from equations (1) and (2) we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-a \right)p}{b}=\dfrac{cp}{1-d} \\
& \Rightarrow \left( 1-a \right)\left( 1-d \right)p=bcp \\
& \Rightarrow \left( 1-d-a+ad \right)p=bcp \\
& \Rightarrow \left( 1-\left( d+a \right)+ad-bc \right)p=0 \\
\end{align}\]
As, we are given that $p\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
So, the correct answer is “1”.
Note: We can also solve this question by writing p in terms of q in equations (1) and (2) and then solving it as below.
Writing p in terms of q we get the equations (1) and (2) as,
\[\Rightarrow p=\dfrac{bq}{1-a}.........\left( 3 \right)\]
\[\Rightarrow p=\dfrac{\left( 1-d \right)q}{c}..........\left( 4 \right)\]
Equating them we get,
\[\begin{align}
& \Rightarrow \dfrac{bq}{1-a}=\dfrac{\left( 1-d \right)q}{c} \\
& \Rightarrow cbq=\left( 1-a \right)\left( 1-d \right)q \\
\end{align}\]
\[\begin{align}
& \Rightarrow cbq=\left( 1-a-d+ad \right)q \\
& \Rightarrow \left( 1-a-d+ad-bc \right)q=0 \\
\end{align}\]
As $q\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
Complete step by step answer:
We are given that $A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]\ne \left[ \begin{matrix}
0 \\
0 \\
\end{matrix} \right]$.
We are also given that AB=B and $a+d=2$.
As we are given that AB=B, let us multiply the matrices A and B and then equate the obtained result to B.
So, let us now consider the product AB.
$\begin{align}
& \Rightarrow AB=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right] \\
& \Rightarrow AB=\left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right] \\
\end{align}$
Now let us equate it to matrix B. Then we get,
$\Rightarrow \left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right]=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]$
So, now let us equate the first element in the both matrices.
\[\begin{align}
& \Rightarrow ap+bq=p \\
& \Rightarrow bq=\left( 1-a \right)p \\
& \Rightarrow q=\dfrac{\left( 1-a \right)p}{b}.........\left( 1 \right) \\
\end{align}\]
Now let us equate the second term in the above matrices. Then we get,
\[\begin{align}
& \Rightarrow cp+dq=q \\
& \Rightarrow \left( 1-d \right)q=cp \\
& \Rightarrow q=\dfrac{cp}{1-d}.........\left( 2 \right) \\
\end{align}\]
Now from equations (1) and (2) we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-a \right)p}{b}=\dfrac{cp}{1-d} \\
& \Rightarrow \left( 1-a \right)\left( 1-d \right)p=bcp \\
& \Rightarrow \left( 1-d-a+ad \right)p=bcp \\
& \Rightarrow \left( 1-\left( d+a \right)+ad-bc \right)p=0 \\
\end{align}\]
As, we are given that $p\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
So, the correct answer is “1”.
Note: We can also solve this question by writing p in terms of q in equations (1) and (2) and then solving it as below.
Writing p in terms of q we get the equations (1) and (2) as,
\[\Rightarrow p=\dfrac{bq}{1-a}.........\left( 3 \right)\]
\[\Rightarrow p=\dfrac{\left( 1-d \right)q}{c}..........\left( 4 \right)\]
Equating them we get,
\[\begin{align}
& \Rightarrow \dfrac{bq}{1-a}=\dfrac{\left( 1-d \right)q}{c} \\
& \Rightarrow cbq=\left( 1-a \right)\left( 1-d \right)q \\
\end{align}\]
\[\begin{align}
& \Rightarrow cbq=\left( 1-a-d+ad \right)q \\
& \Rightarrow \left( 1-a-d+ad-bc \right)q=0 \\
\end{align}\]
As $q\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE