
Let \[a,b,c\] be non-zero real numbers such that \[\int\limits_0^3 {\left( {3a{x^2} + 2bx + c} \right)} dx = \int\limits_1^3 {\left( {3a{x^2} + 2bx + c} \right)} dx\], then which of the following equation is true?
A. \[a + b + c = 3\]
B. \[a + b + c = 1\]
C. \[a + b + c = 0\]
D. \[a + b + c = 2\]
Answer
232.8k+ views
Hint: Here, an equation of the definite integrals is given. First, simplify the left-hand side by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]. Then, simplify the equation and cancel out the common terms from both sides. After that, solve the integrals by using the integration formulas \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\] and \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]. In the end, apply the limits and solve the equation to get the required answer.
Formula Used:\[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given equation of the definite integral is \[\int\limits_0^3 {\left( {3a{x^2} + 2bx + c} \right)} dx = \int\limits_1^3 {\left( {3a{x^2} + 2bx + c} \right)} dx\].
Let’s simplify the left-hand side by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
We get,
\[\int\limits_0^1 {\left( {3a{x^2} + 2bx + c} \right)} dx + \int\limits_1^3 {\left( {3a{x^2} + 2bx + c} \right)} dx = \int\limits_1^3 {\left( {3a{x^2} + 2bx + c} \right)} dx\]
Cancel out the common terms from both sides.
\[\int\limits_0^1 {\left( {3a{x^2} + 2bx + c} \right)} dx = 0\]
Now solve the integral by using the integration formulas \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\] and \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
We get,
\[\left[ {\dfrac{{3a{x^3}}}{3} + \dfrac{{2b{x^2}}}{2} + cx} \right]_0^1 = 0\]
\[ \Rightarrow \left[ {a{x^3} + b{x^2} + cx} \right]_0^1 = 0\]
Apply the upper and lower limits.
\[ \Rightarrow a\left( {{1^3} - {0^3}} \right) + b\left( {{1^2} - {0^2}} \right) + c\left( {1 - 0} \right) = 0\]
\[ \Rightarrow a\left( {1 - 0} \right) + b\left( {1 - 0} \right) + c\left( 1 \right) = 0\]
\[ \Rightarrow a + b + c = 0\]
Option ‘C’ is correct
Note: Students get confused and solve the integral \[\int {{x^n}dx = {x^{n + 1}}} \], which is an incorrect formula. They forget to divide it by \[n + 1\]. The correct formula is \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \].
Formula Used:\[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\]
\[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\]
Complete step by step solution:The given equation of the definite integral is \[\int\limits_0^3 {\left( {3a{x^2} + 2bx + c} \right)} dx = \int\limits_1^3 {\left( {3a{x^2} + 2bx + c} \right)} dx\].
Let’s simplify the left-hand side by applying the integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx\].
We get,
\[\int\limits_0^1 {\left( {3a{x^2} + 2bx + c} \right)} dx + \int\limits_1^3 {\left( {3a{x^2} + 2bx + c} \right)} dx = \int\limits_1^3 {\left( {3a{x^2} + 2bx + c} \right)} dx\]
Cancel out the common terms from both sides.
\[\int\limits_0^1 {\left( {3a{x^2} + 2bx + c} \right)} dx = 0\]
Now solve the integral by using the integration formulas \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b = n\left( {b - a} \right)\] and \[\int\limits_a^b {{x^n}dx = \left[ {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right]} _a^b\].
We get,
\[\left[ {\dfrac{{3a{x^3}}}{3} + \dfrac{{2b{x^2}}}{2} + cx} \right]_0^1 = 0\]
\[ \Rightarrow \left[ {a{x^3} + b{x^2} + cx} \right]_0^1 = 0\]
Apply the upper and lower limits.
\[ \Rightarrow a\left( {{1^3} - {0^3}} \right) + b\left( {{1^2} - {0^2}} \right) + c\left( {1 - 0} \right) = 0\]
\[ \Rightarrow a\left( {1 - 0} \right) + b\left( {1 - 0} \right) + c\left( 1 \right) = 0\]
\[ \Rightarrow a + b + c = 0\]
Option ‘C’ is correct
Note: Students get confused and solve the integral \[\int {{x^n}dx = {x^{n + 1}}} \], which is an incorrect formula. They forget to divide it by \[n + 1\]. The correct formula is \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

