
Let a relation R in the set R of real numbers be defined as \[\left( {a,{\rm{ }}b} \right)\; \in R\] if and only if \[1 + ab > 0\] for all \[a,b \in R\]. Which of the following true for the relation R?
A. Reflexive and symmetric
B. Symmetric and transitive
C. Only transitive
D. An equivalence relation
Answer
233.1k+ views
Hint: First we will check whether the given relation is reflexive by putting b = a in the given inequality. Then we swap the value of a and b to check whether the given relation is a symmetric or not. To check whether the given relation transitive we will take an example.
Complete step by step solution: Given that a relation R in the set R of real numbers be defined as \[\left( {a,{\rm{ }}b} \right)\; \in R\] if and only if \[1 + ab > 0\] for all \[a,b \in R\].
Now we will put b = a in the given inequality:
\[1 + a \cdot a > 0\]
Subtract 1 from both sides:
\[{a^2} > - 1\]
We know that the square of a number is always greater than or equal to zero. In other words, the square of a number is always greater than -1.
Thus \[{a^2} > - 1\] is true.
Thus \[\left( {a,a} \right) \in R\], Hence R is reflexive.
We know that, multiplication follows the commutative law.
The given inequality can be written in the form \[1 + ba > 0\]. This implies \[\left( {b,a} \right) \in R\]. Hence R is symmetric.
For transitive we will use an example:
Putting \[a = 2\] and \[b = - \dfrac{1}{4}\] in the given inequality:
\[1 + 2 \cdot \left( { - \dfrac{1}{4}} \right) > 0\]
\[ \Rightarrow 1 - \dfrac{1}{2} > 0\]
\[ \Rightarrow \dfrac{1}{2} > 0\]
Hence \[\left( {2, - \dfrac{1}{4}} \right) \in R\]
Putting \[a = - \dfrac{1}{4}\]and \[b = - 1\] in the given inequality:
\[1 + \left( { - \dfrac{1}{4}} \right) \cdot \left( { - 1} \right) > 0\]
\[ \Rightarrow 1 + \dfrac{1}{4} > 0\]
\[ \Rightarrow \dfrac{5}{4} > 0\]
Hence \[\left( { - \dfrac{1}{4}, - 1} \right) \in R\]
According to the transitive, \[\left( {2, - 1} \right) \in R\]
But \[1 + 2 \cdot \left( { - 1} \right) = - 1 < 0\]. This implies \[\left( {2, - 1} \right) \notin R\]
Hence R is not transitive.
Option ‘A’ is correct
Note: Students often do mistake to check transitive property. They used the inequality to check it which is incorrect way. Here we have to use counter example to check it.
Complete step by step solution: Given that a relation R in the set R of real numbers be defined as \[\left( {a,{\rm{ }}b} \right)\; \in R\] if and only if \[1 + ab > 0\] for all \[a,b \in R\].
Now we will put b = a in the given inequality:
\[1 + a \cdot a > 0\]
Subtract 1 from both sides:
\[{a^2} > - 1\]
We know that the square of a number is always greater than or equal to zero. In other words, the square of a number is always greater than -1.
Thus \[{a^2} > - 1\] is true.
Thus \[\left( {a,a} \right) \in R\], Hence R is reflexive.
We know that, multiplication follows the commutative law.
The given inequality can be written in the form \[1 + ba > 0\]. This implies \[\left( {b,a} \right) \in R\]. Hence R is symmetric.
For transitive we will use an example:
Putting \[a = 2\] and \[b = - \dfrac{1}{4}\] in the given inequality:
\[1 + 2 \cdot \left( { - \dfrac{1}{4}} \right) > 0\]
\[ \Rightarrow 1 - \dfrac{1}{2} > 0\]
\[ \Rightarrow \dfrac{1}{2} > 0\]
Hence \[\left( {2, - \dfrac{1}{4}} \right) \in R\]
Putting \[a = - \dfrac{1}{4}\]and \[b = - 1\] in the given inequality:
\[1 + \left( { - \dfrac{1}{4}} \right) \cdot \left( { - 1} \right) > 0\]
\[ \Rightarrow 1 + \dfrac{1}{4} > 0\]
\[ \Rightarrow \dfrac{5}{4} > 0\]
Hence \[\left( { - \dfrac{1}{4}, - 1} \right) \in R\]
According to the transitive, \[\left( {2, - 1} \right) \in R\]
But \[1 + 2 \cdot \left( { - 1} \right) = - 1 < 0\]. This implies \[\left( {2, - 1} \right) \notin R\]
Hence R is not transitive.
Option ‘A’ is correct
Note: Students often do mistake to check transitive property. They used the inequality to check it which is incorrect way. Here we have to use counter example to check it.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

