Let A be a square matrix. Which of the following is/are not skew-symmetric matrix/matrices?
(a)$A - {A^T}$ (b)${A^T} - A$
(c)$A{A^T} - {A^T}A$ (d)$A + {A^T}$, when$A$is skew-symmetric
Last updated date: 26th Mar 2023
•
Total views: 309.3k
•
Views today: 6.86k
Answer
309.3k+ views
Hint: For a matrix $A$ to be skew-symmetric ${A^T} = - A$ must be true.
Let $A$ be any square matrix $A = \left( {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right)$
The condition for a matrix $A$ to be skew-symmetric is
If ${A^T} = - A$, then $A$ is skew-symmetric. …(1)
Let us consider all the given options one by one and find out if they are skew-symmetric or not.
Option (a) is $A - {A^T}$. For this to be skew-symmetric, from (1) the condition is
${\left( {A - {A^T}} \right)^T} = - \left( {A - {A^T}} \right)$ …(2)
Let us find ${A^T}$. The transpose of a matrix is written by interchanging the rows and columns into columns and rows.
${A^T} = \left( {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right)$
$
A - {A^T} = \left( {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right) \\
A - {A^T} = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right) \\
$
${\left( {A - {A^T}} \right)^T} = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right)$ …(3)
$ - \left( {A - {A^T}} \right) = - \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right)$ …(4)
From (2), (3), and (4), we find that ${\left( {A - {A^T}} \right)^T} = - \left( {A - {A^T}} \right)$
holds true. So, $A - {A^T}$ is skew-symmetric.
Option (b) is ${A^T} - A$. For this to be skew-symmetric, from (1) the condition is
${\left( {{A^T} - A} \right)^T} = - \left( {{A^T} - A} \right)$ …(5)
$
{A^T} - A = \left( {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right) \\
{A^T} - A = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right) \\
$
${\left( {{A^T} - A} \right)^T} = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right)$ …(6)
$ - \left( {{A^T} - A} \right) = - \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right)$ …(7)
From (5), (6), and (7), we find that ${\left( {{A^T} - A} \right)^T} = - \left( {{A^T} - A} \right)$
holds true. So, ${A^T} - A$ is skew-symmetric.
Option (c) is $A{A^T} - {A^T}A$. For this to be skew-symmetric, from (1) the condition is
${\left( {A{A^T} - {A^T}A} \right)^T} = - \left( {A{A^T} - {A^T}A} \right)$ …(8)
$
A{A^T} = \left( {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right) \\
A{A^T} = \left( {\begin{array}{*{20}{c}}
{1\left( 1 \right) + 2\left( 2 \right)}&{1\left( 3 \right) + 2\left( 4 \right)} \\
{3\left( 1 \right) + 4\left( 2 \right)}&{3\left( 3 \right) + 4\left( 4 \right)}
\end{array}} \right) \\
A{A^T} = \left( {\begin{array}{*{20}{c}}
5&{11} \\
{11}&{25}
\end{array}} \right) \\
$
$
{A^T}A = \left( {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right) \\
{A^T}A = \left( {\begin{array}{*{20}{c}}
{1\left( 1 \right) + 3\left( 3 \right)}&{1\left( 2 \right) + 3\left( 4 \right)} \\
{2\left( 1 \right) + 4\left( 3 \right)}&{2\left( 2 \right) + 4\left( 4 \right)}
\end{array}} \right) \\
{A^T}A = \left( {\begin{array}{*{20}{c}}
{10}&{14} \\
{14}&{20}
\end{array}} \right) \\
$
$
A{A^T} - {A^T}A = \left( {\begin{array}{*{20}{c}}
5&{11} \\
{11}&{25}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}&{14} \\
{14}&{20}
\end{array}} \right) \\
A{A^T} - {A^T}A = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 3} \\
{ - 3}&5
\end{array}} \right) \\
$
${\left( {A{A^T} - {A^T}A} \right)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 3} \\
{ - 3}&5
\end{array}} \right)$ …(9)
$ - \left( {A{A^T} - {A^T}A} \right) = - \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 3} \\
{ - 3}&5
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5&3 \\
3&{ - 5}
\end{array}} \right)$ …(10)
From (8), (9), and (10), we find that ${\left( {A{A^T} - {A^T}A} \right)^T} \ne - \left( {A{A^T} -
{A^T}A} \right)$. So, $A{A^T} - {A^T}A$ is not skew-symmetric.
Option (d) is $A + {A^T}$, when $A$ is skew-symmetric. It is given that $A$ is skew-symmetric. So, from (1),
${A^T} = - A$ …(11)
For $A + {A^T}$ to be skew-symmetric, we need to prove that ${\left( {A + {A^T}} \right)^T} =
- \left( {A + {A^T}} \right)$
Using (11) here, we get
$
LHS = {(A + {A^T})^T} = {(A + {( - A)^T})^T} = \left( {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right) \\
RHS = - (A + {A^T}) = - (A + ( - A)) = \left( {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right) \\
$
LHS=RHS
So, ${\left( {A + {A^T}} \right)^T} = - \left( {A + {A^T}} \right)$ holds true. Hence, $A + {A^T}$ is skew-symmetric, when $A$ is skew-symmetric.
Hence, the only option (c) is not skew-symmetric.
Note: This problem can be alternatively solved without using the sample matrix and just by
using the formula ${\left( {A + B} \right)^T} = {A^T} + {B^T}$ for each of the statements given
to prove the condition for a skew-symmetric matrix. For example, for this $A - {A^T}$ option,
the condition is ${\left( {A - {A^T}} \right)^T} = - \left( {A - {A^T}} \right)$. $LHS = {\left( {A -
{A^T}} \right)^T} = {A^T} - {\left( {{A^T}} \right)^T} = {A^T} - A = - \left( {A - {A^T}} \right) =
RHS$. Similarly, this can be done for all options to prove it.
.
Let $A$ be any square matrix $A = \left( {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right)$
The condition for a matrix $A$ to be skew-symmetric is
If ${A^T} = - A$, then $A$ is skew-symmetric. …(1)
Let us consider all the given options one by one and find out if they are skew-symmetric or not.
Option (a) is $A - {A^T}$. For this to be skew-symmetric, from (1) the condition is
${\left( {A - {A^T}} \right)^T} = - \left( {A - {A^T}} \right)$ …(2)
Let us find ${A^T}$. The transpose of a matrix is written by interchanging the rows and columns into columns and rows.
${A^T} = \left( {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right)$
$
A - {A^T} = \left( {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right) \\
A - {A^T} = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right) \\
$
${\left( {A - {A^T}} \right)^T} = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right)$ …(3)
$ - \left( {A - {A^T}} \right) = - \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right)$ …(4)
From (2), (3), and (4), we find that ${\left( {A - {A^T}} \right)^T} = - \left( {A - {A^T}} \right)$
holds true. So, $A - {A^T}$ is skew-symmetric.
Option (b) is ${A^T} - A$. For this to be skew-symmetric, from (1) the condition is
${\left( {{A^T} - A} \right)^T} = - \left( {{A^T} - A} \right)$ …(5)
$
{A^T} - A = \left( {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right) \\
{A^T} - A = \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right) \\
$
${\left( {{A^T} - A} \right)^T} = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right)$ …(6)
$ - \left( {{A^T} - A} \right) = - \left( {\begin{array}{*{20}{c}}
0&1 \\
{ - 1}&0
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right)$ …(7)
From (5), (6), and (7), we find that ${\left( {{A^T} - A} \right)^T} = - \left( {{A^T} - A} \right)$
holds true. So, ${A^T} - A$ is skew-symmetric.
Option (c) is $A{A^T} - {A^T}A$. For this to be skew-symmetric, from (1) the condition is
${\left( {A{A^T} - {A^T}A} \right)^T} = - \left( {A{A^T} - {A^T}A} \right)$ …(8)
$
A{A^T} = \left( {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right) \\
A{A^T} = \left( {\begin{array}{*{20}{c}}
{1\left( 1 \right) + 2\left( 2 \right)}&{1\left( 3 \right) + 2\left( 4 \right)} \\
{3\left( 1 \right) + 4\left( 2 \right)}&{3\left( 3 \right) + 4\left( 4 \right)}
\end{array}} \right) \\
A{A^T} = \left( {\begin{array}{*{20}{c}}
5&{11} \\
{11}&{25}
\end{array}} \right) \\
$
$
{A^T}A = \left( {\begin{array}{*{20}{c}}
1&3 \\
2&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
1&2 \\
3&4
\end{array}} \right) \\
{A^T}A = \left( {\begin{array}{*{20}{c}}
{1\left( 1 \right) + 3\left( 3 \right)}&{1\left( 2 \right) + 3\left( 4 \right)} \\
{2\left( 1 \right) + 4\left( 3 \right)}&{2\left( 2 \right) + 4\left( 4 \right)}
\end{array}} \right) \\
{A^T}A = \left( {\begin{array}{*{20}{c}}
{10}&{14} \\
{14}&{20}
\end{array}} \right) \\
$
$
A{A^T} - {A^T}A = \left( {\begin{array}{*{20}{c}}
5&{11} \\
{11}&{25}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}&{14} \\
{14}&{20}
\end{array}} \right) \\
A{A^T} - {A^T}A = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 3} \\
{ - 3}&5
\end{array}} \right) \\
$
${\left( {A{A^T} - {A^T}A} \right)^T} = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 3} \\
{ - 3}&5
\end{array}} \right)$ …(9)
$ - \left( {A{A^T} - {A^T}A} \right) = - \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 3} \\
{ - 3}&5
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
5&3 \\
3&{ - 5}
\end{array}} \right)$ …(10)
From (8), (9), and (10), we find that ${\left( {A{A^T} - {A^T}A} \right)^T} \ne - \left( {A{A^T} -
{A^T}A} \right)$. So, $A{A^T} - {A^T}A$ is not skew-symmetric.
Option (d) is $A + {A^T}$, when $A$ is skew-symmetric. It is given that $A$ is skew-symmetric. So, from (1),
${A^T} = - A$ …(11)
For $A + {A^T}$ to be skew-symmetric, we need to prove that ${\left( {A + {A^T}} \right)^T} =
- \left( {A + {A^T}} \right)$
Using (11) here, we get
$
LHS = {(A + {A^T})^T} = {(A + {( - A)^T})^T} = \left( {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right) \\
RHS = - (A + {A^T}) = - (A + ( - A)) = \left( {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right) \\
$
LHS=RHS
So, ${\left( {A + {A^T}} \right)^T} = - \left( {A + {A^T}} \right)$ holds true. Hence, $A + {A^T}$ is skew-symmetric, when $A$ is skew-symmetric.
Hence, the only option (c) is not skew-symmetric.
Note: This problem can be alternatively solved without using the sample matrix and just by
using the formula ${\left( {A + B} \right)^T} = {A^T} + {B^T}$ for each of the statements given
to prove the condition for a skew-symmetric matrix. For example, for this $A - {A^T}$ option,
the condition is ${\left( {A - {A^T}} \right)^T} = - \left( {A - {A^T}} \right)$. $LHS = {\left( {A -
{A^T}} \right)^T} = {A^T} - {\left( {{A^T}} \right)^T} = {A^T} - A = - \left( {A - {A^T}} \right) =
RHS$. Similarly, this can be done for all options to prove it.
.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Ray optics is valid when characteristic dimensions class 12 physics CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Alfred Wallace worked in A Galapagos Island B Australian class 12 biology CBSE

Imagine an atom made up of a proton and a hypothetical class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main
