
Let $A = \{ 1,2,3\} $. Then number of equivalence relations containing $(1,2)$ is:
(a) $1$
(b) $2$
(c) $3$
(d) $4$
Answer
519.3k+ views
(Hint: Try to figure out all the possible cases and then construct the required sets.)
We have the given set as $A = \{ 1,2,3\} $
Now, it is given in the question that,
We have to calculate the number of equivalence relations containing $(1,2)$
That is,$1$ is related to $2$.
So, we have two possible cases:
Case 1: When 1 is not related to 3,
then the relation
\[{R_1} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {3,3} \right)} \right\}\;\] is the only equivalence relation containing $(1,2)$.
Case 2: When 1 is related to 3,
then the relation
\[A \times A\; = \{ \;\left( {1,1} \right),\left( {2,2} \right),\left( {3,3} \right),\left( {1,2} \right),\left( {2,1} \right),\left( {1,3} \right),\left( {3,1} \right),\left( {2,3} \right),\left( {3,2} \right)\;\} \] is the only equivalence relation containing $(1,2)$.
∴ There are two equivalence relations on A with the equivalence property.
So, the required solution is (b) 2.
Note: In solving these questions, we must have an understanding of the equivalence, reflexive, symmetric relations, transitive, etc. As we know that, an equivalence relation is a binary relation that is reflexive, symmetric and transitive.
We have the given set as $A = \{ 1,2,3\} $
Now, it is given in the question that,
We have to calculate the number of equivalence relations containing $(1,2)$
That is,$1$ is related to $2$.
So, we have two possible cases:
Case 1: When 1 is not related to 3,
then the relation
\[{R_1} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {3,3} \right)} \right\}\;\] is the only equivalence relation containing $(1,2)$.
Case 2: When 1 is related to 3,
then the relation
\[A \times A\; = \{ \;\left( {1,1} \right),\left( {2,2} \right),\left( {3,3} \right),\left( {1,2} \right),\left( {2,1} \right),\left( {1,3} \right),\left( {3,1} \right),\left( {2,3} \right),\left( {3,2} \right)\;\} \] is the only equivalence relation containing $(1,2)$.
∴ There are two equivalence relations on A with the equivalence property.
So, the required solution is (b) 2.
Note: In solving these questions, we must have an understanding of the equivalence, reflexive, symmetric relations, transitive, etc. As we know that, an equivalence relation is a binary relation that is reflexive, symmetric and transitive.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

