 Questions & Answers    Question Answers

# Let $A = \{ 1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is:(a) $1$(b) $2$(c) $3$(d) $4$  Answer Verified
(Hint: Try to figure out all the possible cases and then construct the required sets.)

We have the given set as $A = \{ 1,2,3\}$
Now, it is given in the question that,
We have to calculate the number of equivalence relations containing $(1,2)$
That is,$1$ is related to $2$.

So, we have two possible cases:

Case 1: When 1 is not related to 3,
then the relation
${R_1} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {3,3} \right)} \right\}\;$ is the only equivalence relation containing $(1,2)$.

Case 2: When 1 is related to 3,
then the relation
$A \times A\; = \{ \;\left( {1,1} \right),\left( {2,2} \right),\left( {3,3} \right),\left( {1,2} \right),\left( {2,1} \right),\left( {1,3} \right),\left( {3,1} \right),\left( {2,3} \right),\left( {3,2} \right)\;\}$ is the only equivalence relation containing $(1,2)$.

∴ There are two equivalence relations on A with the equivalence property.
So, the required solution is (b) 2.

Note: In solving these questions, we must have an understanding of the equivalence, reflexive, symmetric relations, transitive, etc. As we know that, an equivalence relation is a binary relation that is reflexive, symmetric and transitive.

Bookmark added to your notes.
View Notes
Equivalence Relation  Equivalence Principle  Mass - Energy Equivalence  Difference Between Endpoint and Equivalence Point  CBSE Class 12 Maths Chapter-1 Relations and Functions Formula  Relations and Functions  Relations and Functions Worksheet  Domain and Range Relations  Relation and Its Types  Difference Between Relations and Functions  