Let $0 < x < \dfrac{\pi }{2}$, then $\sec 2x - \tan 2x$ is equal to
$
(a){\text{ tan}}\left( {x - \dfrac{\pi }{4}} \right) \\
(b){\text{ tan}}\left( {\dfrac{\pi }{4} - x} \right) \\
(c){\text{ tan}}\left( {x + \dfrac{\pi }{4}} \right) \\
(d){\text{ ta}}{{\text{n}}^2}\left( {x + \dfrac{\pi }{4}} \right) \\
$
Answer
381k+ views
Hint: In this question we have to evaluate the given trigonometric expression so use basic trigonometric identities like $\sec \theta = \dfrac{1}{{\cos \theta }},{\text{ tan}}\theta {\text{ = }}\dfrac{{\sin \theta }}{{\cos \theta }}$and $\sin 2x = 2\sin x\cos x$ in order to simplify the given expression. This will help you get the right answer.
Complete step-by-step answer:
Given equation is
$\sec 2x - \tan 2x$
Now as we know $\sec \theta = \dfrac{1}{{\cos \theta }},{\text{ tan}}\theta {\text{ = }}\dfrac{{\sin \theta }}{{\cos \theta }}$ so, substitute these values in given equation we have,
$ \Rightarrow \dfrac{1}{{\cos 2x}} - \dfrac{{\sin 2x}}{{\cos 2x}}$
$ \Rightarrow \dfrac{{1 - \sin 2x}}{{\cos 2x}}$
Now as we know $1 = {\sin ^2}x + {\cos ^2}x,{\text{ }}\sin 2x = 2\sin x\cos x,{\text{ }}\cos 2x = {\cos ^2}x - {\sin ^2}x$ so, substitute this value in above equation we have,
$ \Rightarrow \dfrac{{{{\sin }^2}x + {{\cos }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$
Now as we see in above equation numerator is in the form of $\left[ {{{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]$ and the denominator is in the form of $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ so use this property in above equation we have,
$ \Rightarrow \dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}$
Now cancel out the common terms we have,
$ \Rightarrow \dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}$
Now divide by $\sqrt 2 $ in numerator and denominator we have,
$ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt 2 }}\cos x - \dfrac{1}{{\sqrt 2 }}\sin x}}{{\dfrac{1}{{\sqrt 2 }}\cos x + \dfrac{1}{{\sqrt 2 }}\sin x}}$
Now we all know $\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
Therefore above equation becomes
\[ \Rightarrow \dfrac{{\sin \dfrac{\pi }{4}\cos x - \cos \dfrac{\pi }{4}\sin x}}{{\cos \dfrac{\pi }{4}\cos x + \sin \dfrac{\pi }{4}\sin x}}\]
Now as we know
$
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B \\
\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B \\
$
So use this properties in above equation we have,
Here $\left[ {A = \dfrac{\pi }{4}{\text{ & }}B = x} \right]$
$ \Rightarrow \sec 2x - \tan 2x = \dfrac{{\sin \left( {\dfrac{\pi }{4} - x} \right)}}{{\cos \left( {\dfrac{\pi }{4} - x} \right)}} = \tan \left( {\dfrac{\pi }{4} - x} \right)$
Hence option (b) is correct.
Note: Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities as it helps in simplification process, some of the basic identities are being mentioned above while performing solutions. Adequate knowledge of these trigonometric identities will help you get on the right track to reach the solution.
Complete step-by-step answer:
Given equation is
$\sec 2x - \tan 2x$
Now as we know $\sec \theta = \dfrac{1}{{\cos \theta }},{\text{ tan}}\theta {\text{ = }}\dfrac{{\sin \theta }}{{\cos \theta }}$ so, substitute these values in given equation we have,
$ \Rightarrow \dfrac{1}{{\cos 2x}} - \dfrac{{\sin 2x}}{{\cos 2x}}$
$ \Rightarrow \dfrac{{1 - \sin 2x}}{{\cos 2x}}$
Now as we know $1 = {\sin ^2}x + {\cos ^2}x,{\text{ }}\sin 2x = 2\sin x\cos x,{\text{ }}\cos 2x = {\cos ^2}x - {\sin ^2}x$ so, substitute this value in above equation we have,
$ \Rightarrow \dfrac{{{{\sin }^2}x + {{\cos }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$
Now as we see in above equation numerator is in the form of $\left[ {{{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]$ and the denominator is in the form of $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ so use this property in above equation we have,
$ \Rightarrow \dfrac{{{{\left( {\cos x - \sin x} \right)}^2}}}{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}$
Now cancel out the common terms we have,
$ \Rightarrow \dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}$
Now divide by $\sqrt 2 $ in numerator and denominator we have,
$ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt 2 }}\cos x - \dfrac{1}{{\sqrt 2 }}\sin x}}{{\dfrac{1}{{\sqrt 2 }}\cos x + \dfrac{1}{{\sqrt 2 }}\sin x}}$
Now we all know $\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$
Therefore above equation becomes
\[ \Rightarrow \dfrac{{\sin \dfrac{\pi }{4}\cos x - \cos \dfrac{\pi }{4}\sin x}}{{\cos \dfrac{\pi }{4}\cos x + \sin \dfrac{\pi }{4}\sin x}}\]
Now as we know
$
\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B \\
\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B \\
$
So use this properties in above equation we have,
Here $\left[ {A = \dfrac{\pi }{4}{\text{ & }}B = x} \right]$
$ \Rightarrow \sec 2x - \tan 2x = \dfrac{{\sin \left( {\dfrac{\pi }{4} - x} \right)}}{{\cos \left( {\dfrac{\pi }{4} - x} \right)}} = \tan \left( {\dfrac{\pi }{4} - x} \right)$
Hence option (b) is correct.
Note: Whenever we face such types of questions the key point is simply to have a good grasp over the trigonometric identities as it helps in simplification process, some of the basic identities are being mentioned above while performing solutions. Adequate knowledge of these trigonometric identities will help you get on the right track to reach the solution.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

Which is the lightest gas AHelium BOxygen CHydrogen class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Explain zero factorial class 11 maths CBSE

Distinguish between asexual and sexual reproduction class 12 biology CBSE
