Answer
Verified
457.5k+ views
Hint:-The Kirchoff’s current law is basically conservation of charge which states that the total current entering and leaving a junction has to be zero.
Apply Kirchoff’s current law at the node C i.e. the sum of all outgoing (or incoming) current is zero.
Also, current $I = \dfrac{{PD}}{R}$ where $PD$ is the potential difference between any two points and $R$ is the resistance between these two points. Remember current flows from higher potential to lower potential.
Complete step-by-step solution:-
The Kirchoff’s current law states that the total current entering a junction or a node is equal to the charge leaving the node.
In other words, the algebraic sum of every current entering and leaving the junction has to be zero. This property of Kirchhoff law is commonly called Conservation of charge.
Now, in the question we are asked to find the potential difference between A and C.
For this, we have to first calculate the absolute potential of point A and point C.
As the voltage of the battery is given as $100V$ and the positive terminal is connected to point A.
So let us take ${V_A} = 110V$ and ${V_B} = 0$
We know that the current flows from higher potential to lower potential. Also, current $I = \dfrac{{PD}}{R}$ where $PD$ is the potential difference between any two points and $R$ is the resistance between these two points.
Therefore we first calculate equivalent resistance between A and C
$40\Omega $ and $20\Omega $ are in series which gives $40\Omega + 20\Omega = 60\Omega $ which is again parallel with $60\Omega $.
So, ${R_{AC}} = \dfrac{{60}}{2} = 30\Omega $ and ${R_{AB}} = 20\Omega $
Now in order to find the potential of point C, we apply Kirchoff’s current law at the node C i.e. the sum of all outgoing (you can also take incoming) current is zero.
$\dfrac{{{V_C} - {V_A}}}{{{R_{AC}}}} + \dfrac{{{V_C} - {V_B}}}{{{R_{AB}}}} = 0$
On substituting the values we have
$\dfrac{{{V_C} - 110}}{{30}} + \dfrac{{{V_C} - 0}}{{20}} = 0$
On simplifying the equation we get
${V_C} = 44\Omega $
Hence, the potential difference between A and C
${V_C} - {V_A} = 110V - 44V = 66V$ . This is the final answer.
Note:- Kirchhoff’s Current Law is also known as Kirchhoff’s First Law or Kirchhoff’s Junction Rule. According to the Junction rule the algebraic sum of the currents into a junction is equal to the sum of currents outside the junction.
The term Node or a junction is just a connection of two or more conductors like cables and other components. Kirchhoff’s current law can also be used to analyze parallel circuits.
Apply Kirchoff’s current law at the node C i.e. the sum of all outgoing (or incoming) current is zero.
Also, current $I = \dfrac{{PD}}{R}$ where $PD$ is the potential difference between any two points and $R$ is the resistance between these two points. Remember current flows from higher potential to lower potential.
Complete step-by-step solution:-
The Kirchoff’s current law states that the total current entering a junction or a node is equal to the charge leaving the node.
In other words, the algebraic sum of every current entering and leaving the junction has to be zero. This property of Kirchhoff law is commonly called Conservation of charge.
Now, in the question we are asked to find the potential difference between A and C.
For this, we have to first calculate the absolute potential of point A and point C.
As the voltage of the battery is given as $100V$ and the positive terminal is connected to point A.
So let us take ${V_A} = 110V$ and ${V_B} = 0$
We know that the current flows from higher potential to lower potential. Also, current $I = \dfrac{{PD}}{R}$ where $PD$ is the potential difference between any two points and $R$ is the resistance between these two points.
Therefore we first calculate equivalent resistance between A and C
$40\Omega $ and $20\Omega $ are in series which gives $40\Omega + 20\Omega = 60\Omega $ which is again parallel with $60\Omega $.
So, ${R_{AC}} = \dfrac{{60}}{2} = 30\Omega $ and ${R_{AB}} = 20\Omega $
Now in order to find the potential of point C, we apply Kirchoff’s current law at the node C i.e. the sum of all outgoing (you can also take incoming) current is zero.
$\dfrac{{{V_C} - {V_A}}}{{{R_{AC}}}} + \dfrac{{{V_C} - {V_B}}}{{{R_{AB}}}} = 0$
On substituting the values we have
$\dfrac{{{V_C} - 110}}{{30}} + \dfrac{{{V_C} - 0}}{{20}} = 0$
On simplifying the equation we get
${V_C} = 44\Omega $
Hence, the potential difference between A and C
${V_C} - {V_A} = 110V - 44V = 66V$ . This is the final answer.
Note:- Kirchhoff’s Current Law is also known as Kirchhoff’s First Law or Kirchhoff’s Junction Rule. According to the Junction rule the algebraic sum of the currents into a junction is equal to the sum of currents outside the junction.
The term Node or a junction is just a connection of two or more conductors like cables and other components. Kirchhoff’s current law can also be used to analyze parallel circuits.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which of the following is the capital of the union class 9 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Name the metals of the coins Tanka Shashgani and Jital class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life