Answer
Verified
415.8k+ views
Hint: When a photon falls on the surface of metal, the energy of the photon is transferred to the electron. A part of this energy will be acquired by the electrons from the metal and another part is acquired by the ejected electrons, which is known as kinetic energy. The formula used for calculating the energy of incident photons is given below.
Formula used:
The formula used for calculating the energy of the incident photons is given by
$E = W + K.E.$
Here, $E$ is the energy of the incident photons, $W$ is the work function of the metal surface and $K.E.$ is the kinetic energy acquired by the ejected electrons.
Complete step by step answer:
As given in the question, $4.6\,eV$ is required to remove least tightly bound electrons from a metal surface. Therefore, the work function of the metal surface is $W = 4.6eV$.
Also, the kinetic energy acquired by the ejected electrons from the metal surface is $2.2eV$. Therefore, the kinetic energy of ejected electrons is $K.E. = 2.2eV$
The formula used for calculating the energy of the incident photons is given by
$E = W + K.E.$
Here, $E$ is the energy of the incident photons, $W$ is the work function of the metal surface and $K.E.$ is the kinetic energy acquired by the ejected electrons.
$ \Rightarrow \,E = 4.6 + 2.2$
$ \therefore \,E = 6.8eV$
Therefore, the energy of the incident photons is $6.8eV$.
Hence, option C is the correct answer.
Note:Here, the formula used for calculating the energy of the incident photons is given by Einstein. Here, in the question, the values of work function and kinetic energy are given, that is why we have used this formula. Both the values are given in $eV$, therefore, we have not changed the units.
Formula used:
The formula used for calculating the energy of the incident photons is given by
$E = W + K.E.$
Here, $E$ is the energy of the incident photons, $W$ is the work function of the metal surface and $K.E.$ is the kinetic energy acquired by the ejected electrons.
Complete step by step answer:
As given in the question, $4.6\,eV$ is required to remove least tightly bound electrons from a metal surface. Therefore, the work function of the metal surface is $W = 4.6eV$.
Also, the kinetic energy acquired by the ejected electrons from the metal surface is $2.2eV$. Therefore, the kinetic energy of ejected electrons is $K.E. = 2.2eV$
The formula used for calculating the energy of the incident photons is given by
$E = W + K.E.$
Here, $E$ is the energy of the incident photons, $W$ is the work function of the metal surface and $K.E.$ is the kinetic energy acquired by the ejected electrons.
$ \Rightarrow \,E = 4.6 + 2.2$
$ \therefore \,E = 6.8eV$
Therefore, the energy of the incident photons is $6.8eV$.
Hence, option C is the correct answer.
Note:Here, the formula used for calculating the energy of the incident photons is given by Einstein. Here, in the question, the values of work function and kinetic energy are given, that is why we have used this formula. Both the values are given in $eV$, therefore, we have not changed the units.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE