
It is observed that $25%$ of the new cases related to child labour reported to the police station are solved. If $6$ new cases are reported, then the probability that at least $5$ of them will be solved is?
(a) ${{\left( \dfrac{1}{6} \right)}^{6}}$
(b) $\dfrac{19}{1024}$
(c) $\dfrac{19}{2048}$
(d) $\dfrac{19}{4096}$
Answer
608.7k+ views
Hint: Using the binomial expansion theorem we need to find a probability that out of six cases at least five of them are solved.
It is given that $25%$ of the new cases of child labour are reported in the police station are solved.
So, the probability of cases being solved is,
$\begin{align}
& =\dfrac{25}{100} \\
& =\dfrac{1}{4} \\
\end{align}$
Let the probability of cases getting solved be denoted by $'P'$. So, we have
$P=\dfrac{1}{4}$
Then the probabilities of cases not getting solved will be,
$Q=\dfrac{3}{4}$
Now as it is said six new cases are reported.
Now we need to find the probability that out of six new cases at least five of them are solved or six cases are solved.
Here we will apply binomial expansion formula.
As per binomial expansion, we choose $'k'$ numbers out of $'n'$, that is in how many ways we can choose $'k'$elements from a set of $'n'$.
So, the general formula would be
\[{{(a+b)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{a}^{n-k}}{{b}^{k}}}\]
Where ‘a’ and ‘b’ are two events.
So, applying this formula in our question, we have
Probability that at least five cases are solved be,
$R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{Q}^{6-k}}{{P}^{k}}}$
Expanding this, we get
$R\left( X\ge 5 \right)=\left( \begin{matrix}
6 \\
5 \\
\end{matrix} \right){{Q}^{6-5}}{{P}^{5}}+\left( \begin{matrix}
6 \\
6 \\
\end{matrix} \right){{Q}^{6-6}}{{P}^{6}}$
Substituting the values, we get
\[\begin{align}
& R\left( X\ge 5 \right)=\dfrac{6!}{5!(6-5)!}{{\left( \dfrac{3}{4} \right)}^{1}}{{\left( \dfrac{1}{4} \right)}^{5}}+\dfrac{6!}{6!(6-6)!}{{\left( \dfrac{3}{4} \right)}^{0}}{{\left( \dfrac{1}{4} \right)}^{6}} \\
& \Rightarrow R\left( X\ge 5 \right)=6\left( \dfrac{3}{4} \right)\left( \dfrac{1}{1024} \right)+(1)(1)\left( \dfrac{1}{4096} \right) \\
& \Rightarrow R\left( X\ge 5 \right)=\left( \dfrac{18}{4096} \right)+\left( \dfrac{1}{4096} \right) \\
& \Rightarrow R\left( X\ge 5 \right)=\left( \dfrac{19}{4096} \right) \\
\end{align}\]
So, the probability that at least 5 of the new cases are solve will be \[\left( \dfrac{19}{4096} \right)\].
Note: Student gets confused between $P=\dfrac{1}{4}$ and $Q=\dfrac{3}{4}$. In the binomial expansion if they substitute P as Q and Q as P, i.e.,
$R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{Q}^{6-k}}{{P}^{k}}}$is written as $R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{P}^{6-k}}{{Q}^{k}}}$, then they will get the wrong answer.
It is given that $25%$ of the new cases of child labour are reported in the police station are solved.
So, the probability of cases being solved is,
$\begin{align}
& =\dfrac{25}{100} \\
& =\dfrac{1}{4} \\
\end{align}$
Let the probability of cases getting solved be denoted by $'P'$. So, we have
$P=\dfrac{1}{4}$
Then the probabilities of cases not getting solved will be,
$Q=\dfrac{3}{4}$
Now as it is said six new cases are reported.
Now we need to find the probability that out of six new cases at least five of them are solved or six cases are solved.
Here we will apply binomial expansion formula.
As per binomial expansion, we choose $'k'$ numbers out of $'n'$, that is in how many ways we can choose $'k'$elements from a set of $'n'$.
So, the general formula would be
\[{{(a+b)}^{n}}=\sum\limits_{k=0}^{n}{\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{a}^{n-k}}{{b}^{k}}}\]
Where ‘a’ and ‘b’ are two events.
So, applying this formula in our question, we have
Probability that at least five cases are solved be,
$R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{Q}^{6-k}}{{P}^{k}}}$
Expanding this, we get
$R\left( X\ge 5 \right)=\left( \begin{matrix}
6 \\
5 \\
\end{matrix} \right){{Q}^{6-5}}{{P}^{5}}+\left( \begin{matrix}
6 \\
6 \\
\end{matrix} \right){{Q}^{6-6}}{{P}^{6}}$
Substituting the values, we get
\[\begin{align}
& R\left( X\ge 5 \right)=\dfrac{6!}{5!(6-5)!}{{\left( \dfrac{3}{4} \right)}^{1}}{{\left( \dfrac{1}{4} \right)}^{5}}+\dfrac{6!}{6!(6-6)!}{{\left( \dfrac{3}{4} \right)}^{0}}{{\left( \dfrac{1}{4} \right)}^{6}} \\
& \Rightarrow R\left( X\ge 5 \right)=6\left( \dfrac{3}{4} \right)\left( \dfrac{1}{1024} \right)+(1)(1)\left( \dfrac{1}{4096} \right) \\
& \Rightarrow R\left( X\ge 5 \right)=\left( \dfrac{18}{4096} \right)+\left( \dfrac{1}{4096} \right) \\
& \Rightarrow R\left( X\ge 5 \right)=\left( \dfrac{19}{4096} \right) \\
\end{align}\]
So, the probability that at least 5 of the new cases are solve will be \[\left( \dfrac{19}{4096} \right)\].
Note: Student gets confused between $P=\dfrac{1}{4}$ and $Q=\dfrac{3}{4}$. In the binomial expansion if they substitute P as Q and Q as P, i.e.,
$R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{Q}^{6-k}}{{P}^{k}}}$is written as $R\left( X\ge 5 \right)=\sum\limits_{k=5}^{6}{\left( \begin{matrix}
6 \\
k \\
\end{matrix} \right){{P}^{6-k}}{{Q}^{k}}}$, then they will get the wrong answer.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

