
Inverse of a diagonal non- singular matrix is
$
(a){\text{ Scalar matrix}} \\
(b){\text{ Skew - symmetric matrix}} \\
(c){\text{ Zero matrix}} \\
(d){\text{ Diagonal matrix}} \\
$
Answer
619.5k+ views
Hint – We have to consider a diagonal non-singular matrix, diagonal matrices are those which have only diagonal elements while rest all are zero whereas non-singular means that the determinant must not be zero. Use this concept to write a diagonal non-singular matrix. Then use the concept of ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$ to get the inverse.
Complete step-by-step answer:
Consider a diagonal non-singular matrix
$A = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$ (Where a, b, c is any real number and not all equal to 1.)
Now we have to find out the inverse of this matrix.
Now as we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 1 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| - 0 + 0 \\
= a\left( {bc - 0} \right) = abc \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| = 1\left( {bc - 0} \right) = bc,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
0&0 \\
b&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
0&0 \\
0&c
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&c
\end{array}} \right| = 1\left( {ac - 0} \right) = ac,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&b
\end{array}} \right| = 1\left( {ab - 0} \right) = ab \\
\]$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
Now, from equation (1) we have,
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{abc}}\left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&0&0 \\
0&{\dfrac{{ca}}{{abc}}}&0 \\
0&0&{\dfrac{{ab}}{{abc}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0&0 \\
0&{\dfrac{1}{b}}&0 \\
0&0&{\dfrac{1}{c}}
\end{array}} \right]$
So the inverse of matrix A is also a diagonal non-singular matrix having diagonal elements inverted.
Hence, option (d) is correct.
Note – In order to face such types of problems the key concept is simply to have the understanding of basic definitions of scalar, skew-symmetric matrix, zero matrix and diagonal matrix. A scalar matrix is a special diagonal matrix in which all the diagonal elements are the same while the rest are zero. A skew symmetric matrix is one which when transposed gives exactly the same matrix however with a negative sign. Zero matrix is one in which all the elements and a diagonal matrix is being explained in the hint only. Use this concept along with the direct formula to find the inverse of a matrix to get the answer.
Complete step-by-step answer:
Consider a diagonal non-singular matrix
$A = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$ (Where a, b, c is any real number and not all equal to 1.)
Now we have to find out the inverse of this matrix.
Now as we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 1 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| - 0 + 0 \\
= a\left( {bc - 0} \right) = abc \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| = 1\left( {bc - 0} \right) = bc,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
0&0 \\
b&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
0&0 \\
0&c
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&c
\end{array}} \right| = 1\left( {ac - 0} \right) = ac,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&b
\end{array}} \right| = 1\left( {ab - 0} \right) = ab \\
\]$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
Now, from equation (1) we have,
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{abc}}\left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&0&0 \\
0&{\dfrac{{ca}}{{abc}}}&0 \\
0&0&{\dfrac{{ab}}{{abc}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0&0 \\
0&{\dfrac{1}{b}}&0 \\
0&0&{\dfrac{1}{c}}
\end{array}} \right]$
So the inverse of matrix A is also a diagonal non-singular matrix having diagonal elements inverted.
Hence, option (d) is correct.
Note – In order to face such types of problems the key concept is simply to have the understanding of basic definitions of scalar, skew-symmetric matrix, zero matrix and diagonal matrix. A scalar matrix is a special diagonal matrix in which all the diagonal elements are the same while the rest are zero. A skew symmetric matrix is one which when transposed gives exactly the same matrix however with a negative sign. Zero matrix is one in which all the elements and a diagonal matrix is being explained in the hint only. Use this concept along with the direct formula to find the inverse of a matrix to get the answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

