Inverse of a diagonal non- singular matrix is
$
(a){\text{ Scalar matrix}} \\
(b){\text{ Skew - symmetric matrix}} \\
(c){\text{ Zero matrix}} \\
(d){\text{ Diagonal matrix}} \\
$
Last updated date: 28th Mar 2023
•
Total views: 306.3k
•
Views today: 5.82k
Answer
306.3k+ views
Hint – We have to consider a diagonal non-singular matrix, diagonal matrices are those which have only diagonal elements while rest all are zero whereas non-singular means that the determinant must not be zero. Use this concept to write a diagonal non-singular matrix. Then use the concept of ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$ to get the inverse.
Complete step-by-step answer:
Consider a diagonal non-singular matrix
$A = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$ (Where a, b, c is any real number and not all equal to 1.)
Now we have to find out the inverse of this matrix.
Now as we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 1 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| - 0 + 0 \\
= a\left( {bc - 0} \right) = abc \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| = 1\left( {bc - 0} \right) = bc,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
0&0 \\
b&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
0&0 \\
0&c
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&c
\end{array}} \right| = 1\left( {ac - 0} \right) = ac,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&b
\end{array}} \right| = 1\left( {ab - 0} \right) = ab \\
\]$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
Now, from equation (1) we have,
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{abc}}\left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&0&0 \\
0&{\dfrac{{ca}}{{abc}}}&0 \\
0&0&{\dfrac{{ab}}{{abc}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0&0 \\
0&{\dfrac{1}{b}}&0 \\
0&0&{\dfrac{1}{c}}
\end{array}} \right]$
So the inverse of matrix A is also a diagonal non-singular matrix having diagonal elements inverted.
Hence, option (d) is correct.
Note – In order to face such types of problems the key concept is simply to have the understanding of basic definitions of scalar, skew-symmetric matrix, zero matrix and diagonal matrix. A scalar matrix is a special diagonal matrix in which all the diagonal elements are the same while the rest are zero. A skew symmetric matrix is one which when transposed gives exactly the same matrix however with a negative sign. Zero matrix is one in which all the elements and a diagonal matrix is being explained in the hint only. Use this concept along with the direct formula to find the inverse of a matrix to get the answer.
Complete step-by-step answer:
Consider a diagonal non-singular matrix
$A = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$ (Where a, b, c is any real number and not all equal to 1.)
Now we have to find out the inverse of this matrix.
Now as we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 1 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| - 0 + 0 \\
= a\left( {bc - 0} \right) = abc \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| = 1\left( {bc - 0} \right) = bc,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
0&0 \\
b&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
0&0 \\
0&c
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&c
\end{array}} \right| = 1\left( {ac - 0} \right) = ac,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&b
\end{array}} \right| = 1\left( {ab - 0} \right) = ab \\
\]$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
Now, from equation (1) we have,
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{abc}}\left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&0&0 \\
0&{\dfrac{{ca}}{{abc}}}&0 \\
0&0&{\dfrac{{ab}}{{abc}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0&0 \\
0&{\dfrac{1}{b}}&0 \\
0&0&{\dfrac{1}{c}}
\end{array}} \right]$
So the inverse of matrix A is also a diagonal non-singular matrix having diagonal elements inverted.
Hence, option (d) is correct.
Note – In order to face such types of problems the key concept is simply to have the understanding of basic definitions of scalar, skew-symmetric matrix, zero matrix and diagonal matrix. A scalar matrix is a special diagonal matrix in which all the diagonal elements are the same while the rest are zero. A skew symmetric matrix is one which when transposed gives exactly the same matrix however with a negative sign. Zero matrix is one in which all the elements and a diagonal matrix is being explained in the hint only. Use this concept along with the direct formula to find the inverse of a matrix to get the answer.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
