Answer
Verified
493.2k+ views
Hint – We have to consider a diagonal non-singular matrix, diagonal matrices are those which have only diagonal elements while rest all are zero whereas non-singular means that the determinant must not be zero. Use this concept to write a diagonal non-singular matrix. Then use the concept of ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$ to get the inverse.
Complete step-by-step answer:
Consider a diagonal non-singular matrix
$A = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$ (Where a, b, c is any real number and not all equal to 1.)
Now we have to find out the inverse of this matrix.
Now as we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 1 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| - 0 + 0 \\
= a\left( {bc - 0} \right) = abc \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| = 1\left( {bc - 0} \right) = bc,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
0&0 \\
b&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
0&0 \\
0&c
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&c
\end{array}} \right| = 1\left( {ac - 0} \right) = ac,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&b
\end{array}} \right| = 1\left( {ab - 0} \right) = ab \\
\]$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
Now, from equation (1) we have,
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{abc}}\left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&0&0 \\
0&{\dfrac{{ca}}{{abc}}}&0 \\
0&0&{\dfrac{{ab}}{{abc}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0&0 \\
0&{\dfrac{1}{b}}&0 \\
0&0&{\dfrac{1}{c}}
\end{array}} \right]$
So the inverse of matrix A is also a diagonal non-singular matrix having diagonal elements inverted.
Hence, option (d) is correct.
Note – In order to face such types of problems the key concept is simply to have the understanding of basic definitions of scalar, skew-symmetric matrix, zero matrix and diagonal matrix. A scalar matrix is a special diagonal matrix in which all the diagonal elements are the same while the rest are zero. A skew symmetric matrix is one which when transposed gives exactly the same matrix however with a negative sign. Zero matrix is one in which all the elements and a diagonal matrix is being explained in the hint only. Use this concept along with the direct formula to find the inverse of a matrix to get the answer.
Complete step-by-step answer:
Consider a diagonal non-singular matrix
$A = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$ (Where a, b, c is any real number and not all equal to 1.)
Now we have to find out the inverse of this matrix.
Now as we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 1 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| - 0 + 0 \\
= a\left( {bc - 0} \right) = abc \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| = 1\left( {bc - 0} \right) = bc,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
0&0 \\
b&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
0&0 \\
0&c
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&c
\end{array}} \right| = 1\left( {ac - 0} \right) = ac,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&b
\end{array}} \right| = 1\left( {ab - 0} \right) = ab \\
\]$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
Now, from equation (1) we have,
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{abc}}\left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&0&0 \\
0&{\dfrac{{ca}}{{abc}}}&0 \\
0&0&{\dfrac{{ab}}{{abc}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0&0 \\
0&{\dfrac{1}{b}}&0 \\
0&0&{\dfrac{1}{c}}
\end{array}} \right]$
So the inverse of matrix A is also a diagonal non-singular matrix having diagonal elements inverted.
Hence, option (d) is correct.
Note – In order to face such types of problems the key concept is simply to have the understanding of basic definitions of scalar, skew-symmetric matrix, zero matrix and diagonal matrix. A scalar matrix is a special diagonal matrix in which all the diagonal elements are the same while the rest are zero. A skew symmetric matrix is one which when transposed gives exactly the same matrix however with a negative sign. Zero matrix is one in which all the elements and a diagonal matrix is being explained in the hint only. Use this concept along with the direct formula to find the inverse of a matrix to get the answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it