 Questions & Answers    Question Answers

# $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$ is equal to:A. $\pi$B. $\dfrac{\pi }{2}$C. $\dfrac{\pi }{3}$D. $\dfrac{\pi }{4}$  Answer Verified
Hint: For$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$ , use $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, then multiply and divide by $2$and simplify. After that, split the term and use $\sin \theta +\cos \theta =u$and apply the limits. Simplify it, you will get the answer.

Complete step by step solution:
We have to integrate,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$

We know the identity, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$,
So substituting above we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\dfrac{\sin \theta }{\cos \theta }}}$
Also, multiplying and dividing by $2$ we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta d\theta }{\cos \theta +\sin \theta }}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta }}$
So we can write,
$\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta }}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{(\cos \theta +\sin \theta +\cos \theta -\sin \theta )d\theta }{\cos \theta +\sin \theta }}$
Now, splitting we get,
$\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta }}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta +\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{(\cos \theta -\sin \theta )d\theta }{\cos \theta +\sin \theta }}}$
So let, $\sin \theta +\cos \theta =u$
Now differentiating both sides we get,
$(\cos \theta -\sin \theta )d\theta =du$
For $\theta =\dfrac{\pi }{2}$, $u=1$ and $\theta =0$, $u=1$
$\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta }}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta +\dfrac{1}{2}\int\limits_{1}^{1}{\dfrac{du}{u}}}$
Now we know that, $\int{\dfrac{1}{u}=\log u+c}$

$\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta }}=\dfrac{1}{2}\left[ \theta \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\left[ \log u \right]_{1}^{1}$
Now, applying the limit we get,

$\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta }}=\dfrac{1}{2}\left( \dfrac{\pi }{2}-0 \right)+\dfrac{1}{2}\left( \log 1-\log 1 \right)=\dfrac{\pi }{4}+0=\dfrac{\pi }{4}$
We get,
$\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta }}=\dfrac{\pi }{4}$
We get the answer as option(D).

Note: Read the question carefully. You must be familiar with the concept of integration. Also, don’t make silly mistakes. While simplifying, take care that no term is missing. Also, take care of signs. Most of the mistakes occur while simplifying so avoid it.
Bookmark added to your notes.
View Notes
Tan Theta Formula  Inverse Tan  Tan 0 Degrees  Tan 30 Degree  Tan 60 Degrees  Sin Cos Tan Values  Value of Tan 15  What is Mathematics?  CBSE Class 12 Maths Formulas  CBSE Class 12 Maths Chapter-1 Relations and Functions Formula  