Answer
Verified
419.1k+ views
Hint:
Here, we need to find the value of the given integral. We will use a substitution method to simplify the integral. Then, we will use integration by parts to find the value of the integral.
Formula Used:
We will use the formula of integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Complete step by step solution:
We will use a substitution method to solve the given integral.
Rewriting the expression \[\int {\sin x\log \left( {\cos x} \right)} dx\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \int {\left( 1 \right)\sin x\log \left( {\cos x} \right)} dx\]
Rewriting 1 as the product of \[ - 1\] and \[ - 1\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \int {\left( { - 1 \times - 1} \right)\sin x\log \left( {\cos x} \right)} dx\]
We know that we can take constants outside the integral, because \[\int {af\left( x \right)} dx = a\int {f\left( x \right)} dx\].
Therefore, the equation becomes
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \left( { - 1} \right)\int {\left( { - 1} \right)\sin x\log \left( {\cos x} \right)} dx\]
Simplifying the expression, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {\left( { - \sin x} \right)\log \left( {\cos x} \right)} dx\]
Now, we will use substitution to integrate the expression.
Let \[t = \cos x\].
The derivative of \[\cos x\] with respect to \[x\] is \[ - \sin x\].
Differentiating both sides of the equation \[t = \cos x\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = - \sin x\]
Multiplying both sides of the equation by , we get
\[ \Rightarrow dt = \left( { - \sin x} \right)dx\]
Substituting \[\cos x = t\] and \[\left( { - \sin x} \right)dx = dt\] in the equation \[\int {\sin x\log \left( {\cos x} \right)} dx = - \int {\left( { - \sin x} \right)\log \left( {\cos x} \right)} dx\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {\log \left( t \right)} dt\]
Thus, we have simplified the expression within the integral.
Now, we will integrate the simplified function using integration by parts.
Rewriting the equation, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {1 \times \log \left( t \right)} dt\]
Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Let \[u\] be \[\log t\] and \[v\] be \[1\].
Therefore, by integrating \[\int {1 \times \log \left( t \right)} dt\] by parts, we get
\[ \Rightarrow \int {1 \times \log \left( t \right)} dt = \log t\int {\left( 1 \right)} dt - \int {\left( {\dfrac{{d\left( {\log t} \right)}}{{dt}} \times \int {\left( 1 \right)} dt} \right)} dt\]
We know that the derivative of the function \[\log x\] is \[\dfrac{1}{x}\].
Also, we know that the integral of a constant \[\int {\left( 1 \right)} dx\] is \[x\].
Therefore, we can simplify the integral as
\[ \Rightarrow \int {1 \times \log \left( t \right)} dt = \log t \times t - \int {\left( {\dfrac{1}{t} \times t} \right)} dt\]
Simplifying the expression, we get
\[ \Rightarrow \int {\log \left( t \right)} dt = t\log t - \int {\left( 1 \right)} dt\]
Integrating the expression, we get
\[ \Rightarrow \int {\log \left( t \right)} dt = t\log t - t + K\], where \[K\] is a constant of integration
Substitute \[\int {\log \left( t \right)} dt = t\log t - t + K\] in the equation \[\int {\sin x\log \left( {\cos x} \right)} dx = - \int {\log \left( t \right)} dt\], we get
\[\begin{array}{l} \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \left( {t\log t - t + K} \right)\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - 1\left( {t\log t - t + K} \right)\end{array}\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - t\log t + t - K\]
Substituting \[t = \cos x\] in the equation, we get
\[\begin{array}{l} \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \cos x\log \left( {\cos x} \right) + \left( {\cos x} \right) - K\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \left( {\cos x} \right) - \cos x\log \left( {\cos x} \right) - K\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] - K\end{array}\]
Substituting \[ - K = C\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\]
Thus, we get the value of the integral \[\int {\sin x\log \left( {\cos x} \right)} dx\] as \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\].
Note:
We can verify our answer by differentiating the equation \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\] with respect to \[x\], and checking if the derivative is \[\sin x\log \left( {\cos x} \right)\].
Rewriting the function \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\], we get
\[ \Rightarrow \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C = \cos x - \cos x\log \left( {\cos x} \right) + C\]
Differentiating the equation with respect to \[x\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \dfrac{{d\left[ {\cos x\log \left( {\cos x} \right)} \right]}}{{dx}} + 0\\ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \dfrac{{d\left[ {\cos x\log \left( {\cos x} \right)} \right]}}{{dx}}\end{array}\]
Differentiating \[\cos x\log \left( {\cos x} \right)\] using the product rule of differentiation, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \left[ {\cos x\dfrac{{d\left\{ {\log \left( {\cos x} \right)} \right\}}}{{dx}} + \dfrac{{d\left\{ {\cos x} \right\}}}{{dx}}\log \left( {\cos x} \right)} \right]\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\dfrac{{d\left\{ {\log \left( {\cos x} \right)} \right\}}}{{dx}} - \dfrac{{d\left\{ {\cos x} \right\}}}{{dx}}\log \left( {\cos x} \right)\\ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\left[ {\dfrac{1}{{\cos x}} \times \left( { - \sin x} \right)} \right] - \left( { - \sin x} \right)\log \left( {\cos x} \right)\end{array}\]
Multiplying the terms and simplifying the expression, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x + \sin x + \sin x\log \left( {\cos x} \right)\]
Subtracting the terms, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = \sin x\log \left( {\cos x} \right)\]
Since the derivative of \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\] is \[\sin x\log \left( {\cos x} \right)\], we have verified that the integral of \[\sin x\log \left( {\cos x} \right)\] is \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\].
Here, we need to find the value of the given integral. We will use a substitution method to simplify the integral. Then, we will use integration by parts to find the value of the integral.
Formula Used:
We will use the formula of integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Complete step by step solution:
We will use a substitution method to solve the given integral.
Rewriting the expression \[\int {\sin x\log \left( {\cos x} \right)} dx\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \int {\left( 1 \right)\sin x\log \left( {\cos x} \right)} dx\]
Rewriting 1 as the product of \[ - 1\] and \[ - 1\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \int {\left( { - 1 \times - 1} \right)\sin x\log \left( {\cos x} \right)} dx\]
We know that we can take constants outside the integral, because \[\int {af\left( x \right)} dx = a\int {f\left( x \right)} dx\].
Therefore, the equation becomes
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \left( { - 1} \right)\int {\left( { - 1} \right)\sin x\log \left( {\cos x} \right)} dx\]
Simplifying the expression, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {\left( { - \sin x} \right)\log \left( {\cos x} \right)} dx\]
Now, we will use substitution to integrate the expression.
Let \[t = \cos x\].
The derivative of \[\cos x\] with respect to \[x\] is \[ - \sin x\].
Differentiating both sides of the equation \[t = \cos x\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dt}}{{dx}} = - \sin x\]
Multiplying both sides of the equation by , we get
\[ \Rightarrow dt = \left( { - \sin x} \right)dx\]
Substituting \[\cos x = t\] and \[\left( { - \sin x} \right)dx = dt\] in the equation \[\int {\sin x\log \left( {\cos x} \right)} dx = - \int {\left( { - \sin x} \right)\log \left( {\cos x} \right)} dx\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {\log \left( t \right)} dt\]
Thus, we have simplified the expression within the integral.
Now, we will integrate the simplified function using integration by parts.
Rewriting the equation, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {1 \times \log \left( t \right)} dt\]
Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Let \[u\] be \[\log t\] and \[v\] be \[1\].
Therefore, by integrating \[\int {1 \times \log \left( t \right)} dt\] by parts, we get
\[ \Rightarrow \int {1 \times \log \left( t \right)} dt = \log t\int {\left( 1 \right)} dt - \int {\left( {\dfrac{{d\left( {\log t} \right)}}{{dt}} \times \int {\left( 1 \right)} dt} \right)} dt\]
We know that the derivative of the function \[\log x\] is \[\dfrac{1}{x}\].
Also, we know that the integral of a constant \[\int {\left( 1 \right)} dx\] is \[x\].
Therefore, we can simplify the integral as
\[ \Rightarrow \int {1 \times \log \left( t \right)} dt = \log t \times t - \int {\left( {\dfrac{1}{t} \times t} \right)} dt\]
Simplifying the expression, we get
\[ \Rightarrow \int {\log \left( t \right)} dt = t\log t - \int {\left( 1 \right)} dt\]
Integrating the expression, we get
\[ \Rightarrow \int {\log \left( t \right)} dt = t\log t - t + K\], where \[K\] is a constant of integration
Substitute \[\int {\log \left( t \right)} dt = t\log t - t + K\] in the equation \[\int {\sin x\log \left( {\cos x} \right)} dx = - \int {\log \left( t \right)} dt\], we get
\[\begin{array}{l} \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \left( {t\log t - t + K} \right)\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - 1\left( {t\log t - t + K} \right)\end{array}\]
Multiplying the terms using the distributive law of multiplication, we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - t\log t + t - K\]
Substituting \[t = \cos x\] in the equation, we get
\[\begin{array}{l} \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \cos x\log \left( {\cos x} \right) + \left( {\cos x} \right) - K\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \left( {\cos x} \right) - \cos x\log \left( {\cos x} \right) - K\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] - K\end{array}\]
Substituting \[ - K = C\], we get
\[ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\]
Thus, we get the value of the integral \[\int {\sin x\log \left( {\cos x} \right)} dx\] as \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\].
Note:
We can verify our answer by differentiating the equation \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\] with respect to \[x\], and checking if the derivative is \[\sin x\log \left( {\cos x} \right)\].
Rewriting the function \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\], we get
\[ \Rightarrow \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C = \cos x - \cos x\log \left( {\cos x} \right) + C\]
Differentiating the equation with respect to \[x\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \dfrac{{d\left[ {\cos x\log \left( {\cos x} \right)} \right]}}{{dx}} + 0\\ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \dfrac{{d\left[ {\cos x\log \left( {\cos x} \right)} \right]}}{{dx}}\end{array}\]
Differentiating \[\cos x\log \left( {\cos x} \right)\] using the product rule of differentiation, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \left[ {\cos x\dfrac{{d\left\{ {\log \left( {\cos x} \right)} \right\}}}{{dx}} + \dfrac{{d\left\{ {\cos x} \right\}}}{{dx}}\log \left( {\cos x} \right)} \right]\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\dfrac{{d\left\{ {\log \left( {\cos x} \right)} \right\}}}{{dx}} - \dfrac{{d\left\{ {\cos x} \right\}}}{{dx}}\log \left( {\cos x} \right)\\ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\left[ {\dfrac{1}{{\cos x}} \times \left( { - \sin x} \right)} \right] - \left( { - \sin x} \right)\log \left( {\cos x} \right)\end{array}\]
Multiplying the terms and simplifying the expression, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x + \sin x + \sin x\log \left( {\cos x} \right)\]
Subtracting the terms, we get
\[ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = \sin x\log \left( {\cos x} \right)\]
Since the derivative of \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\] is \[\sin x\log \left( {\cos x} \right)\], we have verified that the integral of \[\sin x\log \left( {\cos x} \right)\] is \[\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C\].
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE