
Integrate the function $\dfrac{1}{x{{\left( \log x \right)}^{m}}},x>0,m\ne 1$
Answer
606k+ views
Hint:Substitute $t=\log x$, differentiate them and put the values in the integral. Simplify the integral given by the basic integral formula. Replace $t$ with $\log x$ in the simplified integral.
Complete step-by-step answer:
Let’s consider $I=\int{\dfrac{1}{x{{\left( \log x \right)}^{m}}}dx\ldots \ldots (1)}$
Let’s assume that $\log x=t.$
$\begin{align}
& \therefore x={{\log }^{-1}}t={{e}^{t}} \\
& \Rightarrow x={{e}^{t}} \\
\end{align}$
Differentiate $\log x=t$ with respect to $x.$
$\begin{align}
& \log x=t \\
& \Rightarrow \dfrac{1}{x}dx=dt \\
\end{align}$
Now substitute these values in equation (1).
\[\begin{align}
& I=\int{\dfrac{1}{x{{\left( \log x \right)}^{m}}}dx=\int{\dfrac{dt}{{{t}^{m}}}}} \\
& I=\int{\dfrac{dt}{{{t}^{m}}}}=\int{{{t}^{-m}}dt\ldots \ldots (2)} \\
\end{align}\]
Now integrate equation (2).
We know \[\int{{{x}^{1}}dx=\dfrac{{{x}^{1+1}}}{1+1}=\dfrac{{{x}^{2}}}{2}}+c\] where c is a constant of integration.
Similarly, \[I=\int{{{t}^{-m}}=\left( \dfrac{{{t}^{-m+1}}}{-m+1} \right)+c}\]
\[I=\dfrac{{{t}^{1-m}}}{1-m}+c\]
Now replace $t$ with $\log x$, we get
\[\begin{align}
& I=\dfrac{{{\left( \log x \right)}^{1-m}}}{1-m}+c \\
& I=\dfrac{{{\left( \log x \right)}^{1}}\times {{\left( \log x \right)}^{-m}}}{\left( 1-m \right)}+c \\
& I=\dfrac{1}{1-m}\times \dfrac{\log x}{{{\left( \log x \right)}^{m}}}+c \\
\end{align}\]
Note: The integration can be solved by basic integral formula \[\int{{{x}^{1}}dx=\dfrac{{{x}^{1+1}}}{1+1}=\dfrac{{{x}^{2}}}{2}}+c\]
Similarly \[\Rightarrow \int{1.dx=x+c;\int{a.dx=ax+c}}\] etc.
Complete step-by-step answer:
Let’s consider $I=\int{\dfrac{1}{x{{\left( \log x \right)}^{m}}}dx\ldots \ldots (1)}$
Let’s assume that $\log x=t.$
$\begin{align}
& \therefore x={{\log }^{-1}}t={{e}^{t}} \\
& \Rightarrow x={{e}^{t}} \\
\end{align}$
Differentiate $\log x=t$ with respect to $x.$
$\begin{align}
& \log x=t \\
& \Rightarrow \dfrac{1}{x}dx=dt \\
\end{align}$
Now substitute these values in equation (1).
\[\begin{align}
& I=\int{\dfrac{1}{x{{\left( \log x \right)}^{m}}}dx=\int{\dfrac{dt}{{{t}^{m}}}}} \\
& I=\int{\dfrac{dt}{{{t}^{m}}}}=\int{{{t}^{-m}}dt\ldots \ldots (2)} \\
\end{align}\]
Now integrate equation (2).
We know \[\int{{{x}^{1}}dx=\dfrac{{{x}^{1+1}}}{1+1}=\dfrac{{{x}^{2}}}{2}}+c\] where c is a constant of integration.
Similarly, \[I=\int{{{t}^{-m}}=\left( \dfrac{{{t}^{-m+1}}}{-m+1} \right)+c}\]
\[I=\dfrac{{{t}^{1-m}}}{1-m}+c\]
Now replace $t$ with $\log x$, we get
\[\begin{align}
& I=\dfrac{{{\left( \log x \right)}^{1-m}}}{1-m}+c \\
& I=\dfrac{{{\left( \log x \right)}^{1}}\times {{\left( \log x \right)}^{-m}}}{\left( 1-m \right)}+c \\
& I=\dfrac{1}{1-m}\times \dfrac{\log x}{{{\left( \log x \right)}^{m}}}+c \\
\end{align}\]
Note: The integration can be solved by basic integral formula \[\int{{{x}^{1}}dx=\dfrac{{{x}^{1+1}}}{1+1}=\dfrac{{{x}^{2}}}{2}}+c\]
Similarly \[\Rightarrow \int{1.dx=x+c;\int{a.dx=ax+c}}\] etc.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

