
Integrate the function $\dfrac{1}{x{{\left( \log x \right)}^{m}}},x>0,m\ne 1$
Answer
613.2k+ views
Hint:Substitute $t=\log x$, differentiate them and put the values in the integral. Simplify the integral given by the basic integral formula. Replace $t$ with $\log x$ in the simplified integral.
Complete step-by-step answer:
Let’s consider $I=\int{\dfrac{1}{x{{\left( \log x \right)}^{m}}}dx\ldots \ldots (1)}$
Let’s assume that $\log x=t.$
$\begin{align}
& \therefore x={{\log }^{-1}}t={{e}^{t}} \\
& \Rightarrow x={{e}^{t}} \\
\end{align}$
Differentiate $\log x=t$ with respect to $x.$
$\begin{align}
& \log x=t \\
& \Rightarrow \dfrac{1}{x}dx=dt \\
\end{align}$
Now substitute these values in equation (1).
\[\begin{align}
& I=\int{\dfrac{1}{x{{\left( \log x \right)}^{m}}}dx=\int{\dfrac{dt}{{{t}^{m}}}}} \\
& I=\int{\dfrac{dt}{{{t}^{m}}}}=\int{{{t}^{-m}}dt\ldots \ldots (2)} \\
\end{align}\]
Now integrate equation (2).
We know \[\int{{{x}^{1}}dx=\dfrac{{{x}^{1+1}}}{1+1}=\dfrac{{{x}^{2}}}{2}}+c\] where c is a constant of integration.
Similarly, \[I=\int{{{t}^{-m}}=\left( \dfrac{{{t}^{-m+1}}}{-m+1} \right)+c}\]
\[I=\dfrac{{{t}^{1-m}}}{1-m}+c\]
Now replace $t$ with $\log x$, we get
\[\begin{align}
& I=\dfrac{{{\left( \log x \right)}^{1-m}}}{1-m}+c \\
& I=\dfrac{{{\left( \log x \right)}^{1}}\times {{\left( \log x \right)}^{-m}}}{\left( 1-m \right)}+c \\
& I=\dfrac{1}{1-m}\times \dfrac{\log x}{{{\left( \log x \right)}^{m}}}+c \\
\end{align}\]
Note: The integration can be solved by basic integral formula \[\int{{{x}^{1}}dx=\dfrac{{{x}^{1+1}}}{1+1}=\dfrac{{{x}^{2}}}{2}}+c\]
Similarly \[\Rightarrow \int{1.dx=x+c;\int{a.dx=ax+c}}\] etc.
Complete step-by-step answer:
Let’s consider $I=\int{\dfrac{1}{x{{\left( \log x \right)}^{m}}}dx\ldots \ldots (1)}$
Let’s assume that $\log x=t.$
$\begin{align}
& \therefore x={{\log }^{-1}}t={{e}^{t}} \\
& \Rightarrow x={{e}^{t}} \\
\end{align}$
Differentiate $\log x=t$ with respect to $x.$
$\begin{align}
& \log x=t \\
& \Rightarrow \dfrac{1}{x}dx=dt \\
\end{align}$
Now substitute these values in equation (1).
\[\begin{align}
& I=\int{\dfrac{1}{x{{\left( \log x \right)}^{m}}}dx=\int{\dfrac{dt}{{{t}^{m}}}}} \\
& I=\int{\dfrac{dt}{{{t}^{m}}}}=\int{{{t}^{-m}}dt\ldots \ldots (2)} \\
\end{align}\]
Now integrate equation (2).
We know \[\int{{{x}^{1}}dx=\dfrac{{{x}^{1+1}}}{1+1}=\dfrac{{{x}^{2}}}{2}}+c\] where c is a constant of integration.
Similarly, \[I=\int{{{t}^{-m}}=\left( \dfrac{{{t}^{-m+1}}}{-m+1} \right)+c}\]
\[I=\dfrac{{{t}^{1-m}}}{1-m}+c\]
Now replace $t$ with $\log x$, we get
\[\begin{align}
& I=\dfrac{{{\left( \log x \right)}^{1-m}}}{1-m}+c \\
& I=\dfrac{{{\left( \log x \right)}^{1}}\times {{\left( \log x \right)}^{-m}}}{\left( 1-m \right)}+c \\
& I=\dfrac{1}{1-m}\times \dfrac{\log x}{{{\left( \log x \right)}^{m}}}+c \\
\end{align}\]
Note: The integration can be solved by basic integral formula \[\int{{{x}^{1}}dx=\dfrac{{{x}^{1+1}}}{1+1}=\dfrac{{{x}^{2}}}{2}}+c\]
Similarly \[\Rightarrow \int{1.dx=x+c;\int{a.dx=ax+c}}\] etc.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

