
Integrate the following with respect to x:
$\int {\dfrac{1}{{2x + 3}}dx} $.
Answer
621k+ views
Hint: Simple substitution of the denominator to some variable will help simplifying the integral and reducing it to a standard integral. Use this technique to evaluate this integral.
Complete step-by-step answer:
Let $I = {\text{ }}\int {\dfrac{1}{{2x + 3}}dx} $……………………… (1)
Let 2x+3 = p…………………. (2)
Now, differentiate both the sides of equation (2) we get,
$ \Rightarrow 2dx = dp$………………………… (3)
Make this substitution back into the main integral$I$, substituting (3) in equation (1) we get
$ \Rightarrow I = {\text{ }}\dfrac{1}{2}\int {\dfrac{1}{p}dp} $…………………. (4)
Now, we know that the standard integral of,\[\int {\dfrac{1}{x}dx = \log x} \] ……………… (5)
So the value of equation (4) will be, using above equation (5) we get,
$I = \dfrac{1}{2}\log p + c$
Now, let’s substitute the value of p back into the above integral we get
$I = \dfrac{1}{2}\log \left( {2x + 3} \right) + c$ Using equation (2)
Note: Whenever we face such problems always try and simplify the integral via method of substitution. This will help simplifying the integral into a standard from. Don’t forget to substitute back the variable assumed and take the solution back to the main variable provided in question. The constant of integration is also to be taken care of in exams.
Complete step-by-step answer:
Let $I = {\text{ }}\int {\dfrac{1}{{2x + 3}}dx} $……………………… (1)
Let 2x+3 = p…………………. (2)
Now, differentiate both the sides of equation (2) we get,
$ \Rightarrow 2dx = dp$………………………… (3)
Make this substitution back into the main integral$I$, substituting (3) in equation (1) we get
$ \Rightarrow I = {\text{ }}\dfrac{1}{2}\int {\dfrac{1}{p}dp} $…………………. (4)
Now, we know that the standard integral of,\[\int {\dfrac{1}{x}dx = \log x} \] ……………… (5)
So the value of equation (4) will be, using above equation (5) we get,
$I = \dfrac{1}{2}\log p + c$
Now, let’s substitute the value of p back into the above integral we get
$I = \dfrac{1}{2}\log \left( {2x + 3} \right) + c$ Using equation (2)
Note: Whenever we face such problems always try and simplify the integral via method of substitution. This will help simplifying the integral into a standard from. Don’t forget to substitute back the variable assumed and take the solution back to the main variable provided in question. The constant of integration is also to be taken care of in exams.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

