Answer
Verified
491.4k+ views
Hint: Simple substitution of the denominator to some variable will help simplifying the integral and reducing it to a standard integral. Use this technique to evaluate this integral.
Complete step-by-step answer:
Let $I = {\text{ }}\int {\dfrac{1}{{2x + 3}}dx} $……………………… (1)
Let 2x+3 = p…………………. (2)
Now, differentiate both the sides of equation (2) we get,
$ \Rightarrow 2dx = dp$………………………… (3)
Make this substitution back into the main integral$I$, substituting (3) in equation (1) we get
$ \Rightarrow I = {\text{ }}\dfrac{1}{2}\int {\dfrac{1}{p}dp} $…………………. (4)
Now, we know that the standard integral of,\[\int {\dfrac{1}{x}dx = \log x} \] ……………… (5)
So the value of equation (4) will be, using above equation (5) we get,
$I = \dfrac{1}{2}\log p + c$
Now, let’s substitute the value of p back into the above integral we get
$I = \dfrac{1}{2}\log \left( {2x + 3} \right) + c$ Using equation (2)
Note: Whenever we face such problems always try and simplify the integral via method of substitution. This will help simplifying the integral into a standard from. Don’t forget to substitute back the variable assumed and take the solution back to the main variable provided in question. The constant of integration is also to be taken care of in exams.
Complete step-by-step answer:
Let $I = {\text{ }}\int {\dfrac{1}{{2x + 3}}dx} $……………………… (1)
Let 2x+3 = p…………………. (2)
Now, differentiate both the sides of equation (2) we get,
$ \Rightarrow 2dx = dp$………………………… (3)
Make this substitution back into the main integral$I$, substituting (3) in equation (1) we get
$ \Rightarrow I = {\text{ }}\dfrac{1}{2}\int {\dfrac{1}{p}dp} $…………………. (4)
Now, we know that the standard integral of,\[\int {\dfrac{1}{x}dx = \log x} \] ……………… (5)
So the value of equation (4) will be, using above equation (5) we get,
$I = \dfrac{1}{2}\log p + c$
Now, let’s substitute the value of p back into the above integral we get
$I = \dfrac{1}{2}\log \left( {2x + 3} \right) + c$ Using equation (2)
Note: Whenever we face such problems always try and simplify the integral via method of substitution. This will help simplifying the integral into a standard from. Don’t forget to substitute back the variable assumed and take the solution back to the main variable provided in question. The constant of integration is also to be taken care of in exams.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE