
Integrate the following trigonometric term:
$\int {\cos 3x\cos 4x.dx} $
Answer
605.1k+ views
Hint- in order to solve such types of integral first try to simplify the terms with the help of some common trigonometric identities and then proceed with the integration part.
Complete step-by-step solution -
To find out $\int {\cos 3x\cos 4x.dx} $
By multiplying the given integral by $\dfrac{2}{2}$ , we won’t alter the integral but will bring it to satisfy some common trigonometric identity
$\dfrac{2}{2} \times \int {\cos 3x\cos 4x.dx} = \dfrac{1}{2}\int {2\cos 3x\cos 4x.dx} $
Now, first solving the internal part of the integral.
As we know the trigonometric identity
$2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$
Using the above formula in the integral we get
$
\Rightarrow \dfrac{1}{2}\int {2\cos 3x\cos 4x.dx} \\
\Rightarrow \dfrac{1}{2}\int {\left[ {\cos \left( {4x + 3x} \right) + \cos \left( {4x - 3x} \right)} \right]dx} \\
\Rightarrow \dfrac{1}{2}\int {\left[ {\cos 7x + \cos x} \right]dx} \\
\Rightarrow \dfrac{1}{2}\int {\cos 7x.dx} + \dfrac{1}{2}\int {\cos x.dx} \\
$
Now as we know the formula of integral for cosine which is
$\int {\cos \theta .d\theta } = \sin \theta $
So using the same formula, we get the value of the integral which is:
$
\Rightarrow \dfrac{1}{2}\int {\cos 7x.dx} + \dfrac{1}{2}\int {\cos x.dx} \\
= \dfrac{1}{2}\dfrac{{\sin 7x}}{7} + \dfrac{1}{2}\sin x \\
= \dfrac{{\sin 7x}}{{14}} + \dfrac{{\sin x}}{2} \\
$
Hence, the value of the given integral is $\dfrac{{\sin 7x}}{{14}} + \dfrac{{\sin x}}{2}$ .
Note- In order to solve such questions related to integral of complex trigonometric identity, always try to simplify the terms in the integral part before moving to the integral part of the solution. The trigonometric identity mentioned along with the solution which helps in simplification of terms is very useful and must be remembered. Also remember the formulas for integration of some general terms.
Complete step-by-step solution -
To find out $\int {\cos 3x\cos 4x.dx} $
By multiplying the given integral by $\dfrac{2}{2}$ , we won’t alter the integral but will bring it to satisfy some common trigonometric identity
$\dfrac{2}{2} \times \int {\cos 3x\cos 4x.dx} = \dfrac{1}{2}\int {2\cos 3x\cos 4x.dx} $
Now, first solving the internal part of the integral.
As we know the trigonometric identity
$2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$
Using the above formula in the integral we get
$
\Rightarrow \dfrac{1}{2}\int {2\cos 3x\cos 4x.dx} \\
\Rightarrow \dfrac{1}{2}\int {\left[ {\cos \left( {4x + 3x} \right) + \cos \left( {4x - 3x} \right)} \right]dx} \\
\Rightarrow \dfrac{1}{2}\int {\left[ {\cos 7x + \cos x} \right]dx} \\
\Rightarrow \dfrac{1}{2}\int {\cos 7x.dx} + \dfrac{1}{2}\int {\cos x.dx} \\
$
Now as we know the formula of integral for cosine which is
$\int {\cos \theta .d\theta } = \sin \theta $
So using the same formula, we get the value of the integral which is:
$
\Rightarrow \dfrac{1}{2}\int {\cos 7x.dx} + \dfrac{1}{2}\int {\cos x.dx} \\
= \dfrac{1}{2}\dfrac{{\sin 7x}}{7} + \dfrac{1}{2}\sin x \\
= \dfrac{{\sin 7x}}{{14}} + \dfrac{{\sin x}}{2} \\
$
Hence, the value of the given integral is $\dfrac{{\sin 7x}}{{14}} + \dfrac{{\sin x}}{2}$ .
Note- In order to solve such questions related to integral of complex trigonometric identity, always try to simplify the terms in the integral part before moving to the integral part of the solution. The trigonometric identity mentioned along with the solution which helps in simplification of terms is very useful and must be remembered. Also remember the formulas for integration of some general terms.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

