
Integrate the following \[\int{\dfrac{dx}{\cos x-\sin x}}\]
Answer
578.7k+ views
Hint: From the question, it is clear that we should find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\]. Let us assume the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to I. Now let us multiply and divide with \[\dfrac{1}{\sqrt{2}}\] on R.H.S. We know that \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\]. By using \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\], we should write the denominator in the form of \[\cos A\cos B-\sin A\sin B\]. We know that \[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\]. Now by using this formula, we should write the denominator in the form of \[\cos \theta \]. We know that \[\sec \theta =\dfrac{1}{\cos \theta }\]. We know that \[\int{\sec \theta }=\ln \left| \tan \theta +\sec \theta \right|\]. By using this formula, we can find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\].
Complete step-by-step answer:
From the question, it is clear that we should find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\].
Let us assume the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to I.
\[I=\int{\dfrac{dx}{\cos x-\sin x}}\]
Now let us multiply and divide with \[\dfrac{1}{\sqrt{2}}\].
\[\begin{align}
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\left( \cos x-\sin x \right)}} \\
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x}} \\
\end{align}\]
We know that \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\dfrac{\pi }{4}\cos x-\sin \dfrac{\pi }{4}\sin x}}\]
We know that \[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\left( x+\dfrac{\pi }{4} \right)}}\]
We know that \[\sec \theta =\dfrac{1}{\cos \theta }\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\sec \left( x+\dfrac{\pi }{4} \right)dx}.......(1)\]
Let us assume \[y=x+\dfrac{\pi }{4}.....(2)\].
Now let us differentiate equation (2) with respect to x on both sides.
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( x+\dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{dx}{dx}+\dfrac{d}{dx}\left( \dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=1 \\
\end{align}\]
Now we will apply cross multiplication.
\[\Rightarrow dy=dx......(3)\]
Now let us substitute equation (2) and equation (3) in equation (1), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\operatorname{secy}dy}.......(4)\]
We know that \[\int{\sec \theta }=\ln \left| \tan \theta +\sec \theta \right|\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \operatorname{tany}+\operatorname{secy} \right| \right)+C..........(5)\]
Now let us substitute equation (2) in equation (5), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C.......(6)\]
From equation (6), we can say that
\[\Rightarrow \int{\dfrac{dx}{\cos x-\sin x}}=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]
Note: Students may assume a misconception that \[\int{\sec \theta }=\ln \left| \tan \theta -\sec \theta \right|\]. If this formula is applied, then we get the value of I is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. Then, we get the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. But we know that the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. So, this misconception should be avoided to get an accurate result.
Complete step-by-step answer:
From the question, it is clear that we should find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\].
Let us assume the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to I.
\[I=\int{\dfrac{dx}{\cos x-\sin x}}\]
Now let us multiply and divide with \[\dfrac{1}{\sqrt{2}}\].
\[\begin{align}
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\left( \cos x-\sin x \right)}} \\
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x}} \\
\end{align}\]
We know that \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\dfrac{\pi }{4}\cos x-\sin \dfrac{\pi }{4}\sin x}}\]
We know that \[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\left( x+\dfrac{\pi }{4} \right)}}\]
We know that \[\sec \theta =\dfrac{1}{\cos \theta }\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\sec \left( x+\dfrac{\pi }{4} \right)dx}.......(1)\]
Let us assume \[y=x+\dfrac{\pi }{4}.....(2)\].
Now let us differentiate equation (2) with respect to x on both sides.
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( x+\dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{dx}{dx}+\dfrac{d}{dx}\left( \dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=1 \\
\end{align}\]
Now we will apply cross multiplication.
\[\Rightarrow dy=dx......(3)\]
Now let us substitute equation (2) and equation (3) in equation (1), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\operatorname{secy}dy}.......(4)\]
We know that \[\int{\sec \theta }=\ln \left| \tan \theta +\sec \theta \right|\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \operatorname{tany}+\operatorname{secy} \right| \right)+C..........(5)\]
Now let us substitute equation (2) in equation (5), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C.......(6)\]
From equation (6), we can say that
\[\Rightarrow \int{\dfrac{dx}{\cos x-\sin x}}=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]
Note: Students may assume a misconception that \[\int{\sec \theta }=\ln \left| \tan \theta -\sec \theta \right|\]. If this formula is applied, then we get the value of I is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. Then, we get the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. But we know that the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. So, this misconception should be avoided to get an accurate result.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

