
Integrate the following \[\int{\dfrac{dx}{\cos x-\sin x}}\]
Answer
506.7k+ views
Hint: From the question, it is clear that we should find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\]. Let us assume the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to I. Now let us multiply and divide with \[\dfrac{1}{\sqrt{2}}\] on R.H.S. We know that \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\]. By using \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\], we should write the denominator in the form of \[\cos A\cos B-\sin A\sin B\]. We know that \[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\]. Now by using this formula, we should write the denominator in the form of \[\cos \theta \]. We know that \[\sec \theta =\dfrac{1}{\cos \theta }\]. We know that \[\int{\sec \theta }=\ln \left| \tan \theta +\sec \theta \right|\]. By using this formula, we can find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\].
Complete step-by-step answer:
From the question, it is clear that we should find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\].
Let us assume the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to I.
\[I=\int{\dfrac{dx}{\cos x-\sin x}}\]
Now let us multiply and divide with \[\dfrac{1}{\sqrt{2}}\].
\[\begin{align}
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\left( \cos x-\sin x \right)}} \\
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x}} \\
\end{align}\]
We know that \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\dfrac{\pi }{4}\cos x-\sin \dfrac{\pi }{4}\sin x}}\]
We know that \[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\left( x+\dfrac{\pi }{4} \right)}}\]
We know that \[\sec \theta =\dfrac{1}{\cos \theta }\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\sec \left( x+\dfrac{\pi }{4} \right)dx}.......(1)\]
Let us assume \[y=x+\dfrac{\pi }{4}.....(2)\].
Now let us differentiate equation (2) with respect to x on both sides.
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( x+\dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{dx}{dx}+\dfrac{d}{dx}\left( \dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=1 \\
\end{align}\]
Now we will apply cross multiplication.
\[\Rightarrow dy=dx......(3)\]
Now let us substitute equation (2) and equation (3) in equation (1), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\operatorname{secy}dy}.......(4)\]
We know that \[\int{\sec \theta }=\ln \left| \tan \theta +\sec \theta \right|\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \operatorname{tany}+\operatorname{secy} \right| \right)+C..........(5)\]
Now let us substitute equation (2) in equation (5), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C.......(6)\]
From equation (6), we can say that
\[\Rightarrow \int{\dfrac{dx}{\cos x-\sin x}}=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]
Note: Students may assume a misconception that \[\int{\sec \theta }=\ln \left| \tan \theta -\sec \theta \right|\]. If this formula is applied, then we get the value of I is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. Then, we get the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. But we know that the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. So, this misconception should be avoided to get an accurate result.
Complete step-by-step answer:
From the question, it is clear that we should find the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\].
Let us assume the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to I.
\[I=\int{\dfrac{dx}{\cos x-\sin x}}\]
Now let us multiply and divide with \[\dfrac{1}{\sqrt{2}}\].
\[\begin{align}
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\left( \cos x-\sin x \right)}} \\
& \Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{\dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x}} \\
\end{align}\]
We know that \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\dfrac{\pi }{4}\cos x-\sin \dfrac{\pi }{4}\sin x}}\]
We know that \[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\dfrac{dx}{cos\left( x+\dfrac{\pi }{4} \right)}}\]
We know that \[\sec \theta =\dfrac{1}{\cos \theta }\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\sec \left( x+\dfrac{\pi }{4} \right)dx}.......(1)\]
Let us assume \[y=x+\dfrac{\pi }{4}.....(2)\].
Now let us differentiate equation (2) with respect to x on both sides.
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( x+\dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{dx}{dx}+\dfrac{d}{dx}\left( \dfrac{\pi }{4} \right) \\
& \Rightarrow \dfrac{dy}{dx}=1 \\
\end{align}\]
Now we will apply cross multiplication.
\[\Rightarrow dy=dx......(3)\]
Now let us substitute equation (2) and equation (3) in equation (1), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\int{\operatorname{secy}dy}.......(4)\]
We know that \[\int{\sec \theta }=\ln \left| \tan \theta +\sec \theta \right|\].
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \operatorname{tany}+\operatorname{secy} \right| \right)+C..........(5)\]
Now let us substitute equation (2) in equation (5), then we get
\[\Rightarrow I=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C.......(6)\]
From equation (6), we can say that
\[\Rightarrow \int{\dfrac{dx}{\cos x-\sin x}}=\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]
Note: Students may assume a misconception that \[\int{\sec \theta }=\ln \left| \tan \theta -\sec \theta \right|\]. If this formula is applied, then we get the value of I is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. Then, we get the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)-\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. But we know that the value of \[\int{\dfrac{dx}{\cos x-\sin x}}\] is equal to \[\dfrac{1}{\sqrt{2}}\left( \ln \left| \tan \left( x+\dfrac{\pi }{4} \right)+\sec \left( x+\dfrac{\pi }{4} \right) \right| \right)+C\]. So, this misconception should be avoided to get an accurate result.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
