
Integrate the following function:
$\sin x\sin \left( {\cos x} \right).$
Answer
624k+ views
Hint: - Substitute the value of $\cos x = t$ and differentiate the equation with respect to x.
Let, $I = \int {\sin x\sin \left( {\cos x} \right)dx} $
Substitute, $\cos x = t.............\left( 1 \right)$
Differentiate equation 1 w.r.t. $x$
As we know differentiation of $\cos x = - \sin x$
$ \Rightarrow - \sin xdx = dt$
Substitute this value in the integral we have
$
I = \int {\sin \left( t \right)\left( { - dt} \right)} \\
\Rightarrow I = - \int {\sin tdt} \\
$
Now as we know integration of $\sin t$ is $- \cos t$
$ \Rightarrow I = - \left( { - \cos t} \right) + c$, where c is some arbitrary integration constant
Now put the value of $t$
$
\Rightarrow I = \cos t + c \\
\Rightarrow I = \cos \left( {\cos x} \right) + c \\
$
So, this is the required value of the integral.
Note: - In such types of question the key concept we have to remember is that always substitute some values to $t$ or any other variable, to make integration simple, then differentiate the variable you assumed w.r.t the given variable, then re-substitute this value in to integral, then always remember the basic differentiation and integration formulas, then simplify we will get the required value of the integral.
Let, $I = \int {\sin x\sin \left( {\cos x} \right)dx} $
Substitute, $\cos x = t.............\left( 1 \right)$
Differentiate equation 1 w.r.t. $x$
As we know differentiation of $\cos x = - \sin x$
$ \Rightarrow - \sin xdx = dt$
Substitute this value in the integral we have
$
I = \int {\sin \left( t \right)\left( { - dt} \right)} \\
\Rightarrow I = - \int {\sin tdt} \\
$
Now as we know integration of $\sin t$ is $- \cos t$
$ \Rightarrow I = - \left( { - \cos t} \right) + c$, where c is some arbitrary integration constant
Now put the value of $t$
$
\Rightarrow I = \cos t + c \\
\Rightarrow I = \cos \left( {\cos x} \right) + c \\
$
So, this is the required value of the integral.
Note: - In such types of question the key concept we have to remember is that always substitute some values to $t$ or any other variable, to make integration simple, then differentiate the variable you assumed w.r.t the given variable, then re-substitute this value in to integral, then always remember the basic differentiation and integration formulas, then simplify we will get the required value of the integral.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

