Answer
Verified
496.8k+ views
Hint: - Substitute the value of $\cos x = t$ and differentiate the equation with respect to x.
Let, $I = \int {\sin x\sin \left( {\cos x} \right)dx} $
Substitute, $\cos x = t.............\left( 1 \right)$
Differentiate equation 1 w.r.t. $x$
As we know differentiation of $\cos x = - \sin x$
$ \Rightarrow - \sin xdx = dt$
Substitute this value in the integral we have
$
I = \int {\sin \left( t \right)\left( { - dt} \right)} \\
\Rightarrow I = - \int {\sin tdt} \\
$
Now as we know integration of $\sin t$ is $- \cos t$
$ \Rightarrow I = - \left( { - \cos t} \right) + c$, where c is some arbitrary integration constant
Now put the value of $t$
$
\Rightarrow I = \cos t + c \\
\Rightarrow I = \cos \left( {\cos x} \right) + c \\
$
So, this is the required value of the integral.
Note: - In such types of question the key concept we have to remember is that always substitute some values to $t$ or any other variable, to make integration simple, then differentiate the variable you assumed w.r.t the given variable, then re-substitute this value in to integral, then always remember the basic differentiation and integration formulas, then simplify we will get the required value of the integral.
Let, $I = \int {\sin x\sin \left( {\cos x} \right)dx} $
Substitute, $\cos x = t.............\left( 1 \right)$
Differentiate equation 1 w.r.t. $x$
As we know differentiation of $\cos x = - \sin x$
$ \Rightarrow - \sin xdx = dt$
Substitute this value in the integral we have
$
I = \int {\sin \left( t \right)\left( { - dt} \right)} \\
\Rightarrow I = - \int {\sin tdt} \\
$
Now as we know integration of $\sin t$ is $- \cos t$
$ \Rightarrow I = - \left( { - \cos t} \right) + c$, where c is some arbitrary integration constant
Now put the value of $t$
$
\Rightarrow I = \cos t + c \\
\Rightarrow I = \cos \left( {\cos x} \right) + c \\
$
So, this is the required value of the integral.
Note: - In such types of question the key concept we have to remember is that always substitute some values to $t$ or any other variable, to make integration simple, then differentiate the variable you assumed w.r.t the given variable, then re-substitute this value in to integral, then always remember the basic differentiation and integration formulas, then simplify we will get the required value of the integral.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE