Answer
Verified
426k+ views
Hint: We know that the definition of tangent is the ratio of sine to cosine. That is \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] . Applying this to the given problem and taking LCM we simplify it to the simple form. After getting it in the simple form we use substitute rules for further simplification. Also we need to know the integration of certain functions.
Complete step by step solution:
Given, \[\int {\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)dx} \] .
Now we simplify \[\dfrac{{1 - \tan x}}{{1 + \tan x}}\] by substituting \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] . We get,
\[\dfrac{{1 - \tan x}}{{1 + \tan x}} = \dfrac{{1 - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{1 + \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}\]
Now taking LCM we have,
\[ = \dfrac{{\left( {\dfrac{{\cos x - \sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{{\cos x + \sin x}}{{\cos x}}} \right)}}\]
Rearranging the equation we have,
\[ = \dfrac{{\cos x - \sin x}}{{\cos x}} \times \dfrac{{\cos x}}{{\cos x + \sin x}}\]
Cancelling cosine we have,
\[ = \dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}\] .
Thus we have,
\[\int {\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)dx} = \int {\left( {\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}} \right)dx} \]
\[ = \int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}dx} \]
Take \[\cos x + \sin x = t\] . Differentiating implicitly with respect to ‘x’ we have,
We know the differentiation of cosine is negative sine and differentiation of sine is cosine.
\[( - \sin x + \cos x)dx = dt\]
Rearranging the terms in brackets we have,
\[(\cos x - \sin x)dx = dt\] .
Now substituting this in the above integral we have,
\[ = \int {\dfrac{1}{t}dt} \]
We know that the integration of \[\dfrac{1}{t}\] is a logarithm function.
\[ = \log t + c\]
Where ‘c’ is the integration constant.
But we need the answer in terms of ‘x’.
We have \[\cos x + \sin x = t\] , substituting this we have,
\[ = \log (\cos x + \sin x) + c\] .
Thus we have,
\[\int {\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)dx} = = \log (\cos x + \sin x) + c\] , where ‘c’ is the integration constant.
So, the correct answer is “$ \log (\cos x + \sin x) + c$”.
Note: Here we have an indefinite integral that is no upper limit and lower limit. Hence, in the case of indefinite integral we have integration constant. In definite integral we have lower limits and upper limits. Hence, in the case of definite integral we don’t have integration constant. As we can see in the above problem by using the substitute rule we can simplify the problem easily.
Complete step by step solution:
Given, \[\int {\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)dx} \] .
Now we simplify \[\dfrac{{1 - \tan x}}{{1 + \tan x}}\] by substituting \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] . We get,
\[\dfrac{{1 - \tan x}}{{1 + \tan x}} = \dfrac{{1 - \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}{{1 + \left( {\dfrac{{\sin x}}{{\cos x}}} \right)}}\]
Now taking LCM we have,
\[ = \dfrac{{\left( {\dfrac{{\cos x - \sin x}}{{\cos x}}} \right)}}{{\left( {\dfrac{{\cos x + \sin x}}{{\cos x}}} \right)}}\]
Rearranging the equation we have,
\[ = \dfrac{{\cos x - \sin x}}{{\cos x}} \times \dfrac{{\cos x}}{{\cos x + \sin x}}\]
Cancelling cosine we have,
\[ = \dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}\] .
Thus we have,
\[\int {\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)dx} = \int {\left( {\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}}} \right)dx} \]
\[ = \int {\dfrac{{\left( {\cos x - \sin x} \right)}}{{\left( {\cos x + \sin x} \right)}}dx} \]
Take \[\cos x + \sin x = t\] . Differentiating implicitly with respect to ‘x’ we have,
We know the differentiation of cosine is negative sine and differentiation of sine is cosine.
\[( - \sin x + \cos x)dx = dt\]
Rearranging the terms in brackets we have,
\[(\cos x - \sin x)dx = dt\] .
Now substituting this in the above integral we have,
\[ = \int {\dfrac{1}{t}dt} \]
We know that the integration of \[\dfrac{1}{t}\] is a logarithm function.
\[ = \log t + c\]
Where ‘c’ is the integration constant.
But we need the answer in terms of ‘x’.
We have \[\cos x + \sin x = t\] , substituting this we have,
\[ = \log (\cos x + \sin x) + c\] .
Thus we have,
\[\int {\left( {\dfrac{{1 - \tan x}}{{1 + \tan x}}} \right)dx} = = \log (\cos x + \sin x) + c\] , where ‘c’ is the integration constant.
So, the correct answer is “$ \log (\cos x + \sin x) + c$”.
Note: Here we have an indefinite integral that is no upper limit and lower limit. Hence, in the case of indefinite integral we have integration constant. In definite integral we have lower limits and upper limits. Hence, in the case of definite integral we don’t have integration constant. As we can see in the above problem by using the substitute rule we can simplify the problem easily.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it