
What is \[\int_0^1 {\dfrac{{{{\tan }^{ - 1}}x}}{{1 + {x^2}}}dx} \] equal to?
A.\[\dfrac{{{\pi ^2}}}{8}\]
B.\[\dfrac{{{\pi ^2}}}{{32}}\]
C.\[\dfrac{\pi }{4}\]
D.\[\dfrac{\pi }{2}\]
Answer
499.5k+ views
Hint: Here in this question, we have to find the integrated value of a given trigonometric function. This can be solved by using a substitution method and later integrated by using the standard trigonometric formula of integration. Since they have mentioned the limit points. It is a definite integral on applying the limits we get the required solution.
Complete step by step solution:
In integration we have two different kinds. One is definite integral and another one is indefinite integral. In definite integral the limits points are mentioned. In indefinite integral the limit points are not mentioned.
Here this question belongs to the definite integral where the limits points are mentioned.
Now consider the given function
\[\int_0^1 {\dfrac{{{{\tan }^{ - 1}}x}}{{1 + {x^2}}}dx} \]--------(1)
Here the lower limit is 0 and the upper limit is 1
We integrate the above function by using a substitution method
Let take, \[t = {\tan ^{ - 1}}x\]
Differentiate with respect to x, then
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{1 + {x^2}}}\]
Or
\[ \Rightarrow dt = \dfrac{1}{{1 + {x^2}}}dx\]
Substitute \[t\] and \[dt\] in equation (1), we have
\[ \Rightarrow \int_0^1 {tdt} \]
Now integrate using a formula \[\int_a^b {{x^n} = } \left. {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right|_a^b\], then we gave
\[ \Rightarrow \left. {\dfrac{{{t^2}}}{2}} \right|_0^1\]
Put, \[t = {\tan ^{ - 1}}x\], then
\[ \Rightarrow \left. {\dfrac{1}{2}{{\left( {{{\tan }^{ - 1}}x} \right)}^2}} \right|_0^1\]
On applying a limit, we have
\[ \Rightarrow \dfrac{1}{2}\left[ {{{\left( {{{\tan }^{ - 1}}1} \right)}^2} - {{\left( {{{\tan }^{ - 1}}0} \right)}^2}} \right]\]
As we know the value of \[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\] and \[{\tan ^{ - 1}}0 = 0\], then on substituting the values we get
\[ \Rightarrow \dfrac{1}{2}\left[ {{{\left( {\dfrac{\pi }{4}} \right)}^2} - {{\left( 0 \right)}^2}} \right]\]
On simplification, we get
\[ \Rightarrow \dfrac{1}{2}\left[ {{{\left( {\dfrac{\pi }{4}} \right)}^2}} \right]\]
\[ \Rightarrow \dfrac{1}{2}\left[ {\dfrac{{{\pi ^2}}}{{16}}} \right]\]
\[ \Rightarrow \dfrac{{{\pi ^2}}}{{32}}\]
Hence, we have integrated the given function and applied the limit points and obtained an answer.
\[\therefore \] The value of \[\int_0^1 {\dfrac{{{{\tan }^{ - 1}}x}}{{1 + {x^2}}}dx} = \dfrac{{{\pi ^2}}}{{32}}\]. So, option (B) is correct.
Note: By simplifying the question using the substitution we can integrate the given function easily. If we apply integration directly it may be complicated to solve further. So, simplification is needed. We must know the differentiation and integration formulas. The standard integration formulas for the trigonometric ratios must know.
Complete step by step solution:
In integration we have two different kinds. One is definite integral and another one is indefinite integral. In definite integral the limits points are mentioned. In indefinite integral the limit points are not mentioned.
Here this question belongs to the definite integral where the limits points are mentioned.
Now consider the given function
\[\int_0^1 {\dfrac{{{{\tan }^{ - 1}}x}}{{1 + {x^2}}}dx} \]--------(1)
Here the lower limit is 0 and the upper limit is 1
We integrate the above function by using a substitution method
Let take, \[t = {\tan ^{ - 1}}x\]
Differentiate with respect to x, then
\[ \Rightarrow \dfrac{{dt}}{{dx}} = \dfrac{1}{{1 + {x^2}}}\]
Or
\[ \Rightarrow dt = \dfrac{1}{{1 + {x^2}}}dx\]
Substitute \[t\] and \[dt\] in equation (1), we have
\[ \Rightarrow \int_0^1 {tdt} \]
Now integrate using a formula \[\int_a^b {{x^n} = } \left. {\dfrac{{{x^{n + 1}}}}{{n + 1}}} \right|_a^b\], then we gave
\[ \Rightarrow \left. {\dfrac{{{t^2}}}{2}} \right|_0^1\]
Put, \[t = {\tan ^{ - 1}}x\], then
\[ \Rightarrow \left. {\dfrac{1}{2}{{\left( {{{\tan }^{ - 1}}x} \right)}^2}} \right|_0^1\]
On applying a limit, we have
\[ \Rightarrow \dfrac{1}{2}\left[ {{{\left( {{{\tan }^{ - 1}}1} \right)}^2} - {{\left( {{{\tan }^{ - 1}}0} \right)}^2}} \right]\]
As we know the value of \[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\] and \[{\tan ^{ - 1}}0 = 0\], then on substituting the values we get
\[ \Rightarrow \dfrac{1}{2}\left[ {{{\left( {\dfrac{\pi }{4}} \right)}^2} - {{\left( 0 \right)}^2}} \right]\]
On simplification, we get
\[ \Rightarrow \dfrac{1}{2}\left[ {{{\left( {\dfrac{\pi }{4}} \right)}^2}} \right]\]
\[ \Rightarrow \dfrac{1}{2}\left[ {\dfrac{{{\pi ^2}}}{{16}}} \right]\]
\[ \Rightarrow \dfrac{{{\pi ^2}}}{{32}}\]
Hence, we have integrated the given function and applied the limit points and obtained an answer.
\[\therefore \] The value of \[\int_0^1 {\dfrac{{{{\tan }^{ - 1}}x}}{{1 + {x^2}}}dx} = \dfrac{{{\pi ^2}}}{{32}}\]. So, option (B) is correct.
Note: By simplifying the question using the substitution we can integrate the given function easily. If we apply integration directly it may be complicated to solve further. So, simplification is needed. We must know the differentiation and integration formulas. The standard integration formulas for the trigonometric ratios must know.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

