Answer
Verified
426.9k+ views
Hint: This problem deals with integrations. There are two types of integrals which are definite integrals and indefinite integrals. Indefinite integrals have no limits on the integral unlike the definite integrals. There are three methods to solve the indefinite integrals. The first method is integration by substitution. Whereas the second method is integration by partial fractions. The third method is integration by parts.
In this problem we are going to do the integration of the given integral by the method of integration by substitution.
Complete step-by-step answer:
Integration by substitution is the method where the function inside the integral is assigned another variable of integration. That is we are going to substitute another variable instead of the original function, which makes the integration process much easier.
Given an indefinite integral, we have to find the integral of $\int {{{\sec }^n}x\tan xdx} $.
Consider the integral $\int {{{\sec }^n}x\tan xdx} $, as given below:
$ \Rightarrow \int {{{\sec }^n}x\tan xdx} $
$ \Rightarrow \int {{{\sec }^{n - 1 + 1}}x\tan xdx} $
Here ${\sec ^{n - 1 + 1}}x = {\sec ^{n - 1}}x\sec x$, as expressed below in the integral.
$ \Rightarrow \int {{{\sec }^{n - 1}}x\sec x\tan xdx} $
Applying the integration by substitution method on the integral, as given below:
Let $\sec x = t$ ;
Now differentiate the above equation on both sides, as given below:
$ \Rightarrow \sec x\tan xdx = dt$
Here $\sec x = t$, hence ${\sec ^{n - 1}}x = {t^{n - 1}}$
Now substitute all the above expressions in the integral $\int {{{\sec }^{n - 1}}x\sec x\tan xdx} $, as given below:
$ \Rightarrow \int {{t^{n - 1}}dt} $
$ \Rightarrow \dfrac{{{t^{n - 1 + 1}}}}{{n - 1 + 1}} + c$
$ \Rightarrow \dfrac{{{t^n}}}{n} + c$
Substitute back what the variable $t$ was assigned for $t = \sec x$, as given below:
$ \Rightarrow \dfrac{{{{\sec }^n}x}}{n} + c$
$\therefore \int {{{\sec }^n}x\tan xdx} = \dfrac{{{{\sec }^n}x}}{n} + c$
$\int {{{\sec }^n}x\tan xdx} = \dfrac{{{{\sec }^n}x}}{n} + c$
Note:
Please note that this problem of integration can also be done by the method of integration by parts, which is the integration of the product of two functions which is given by the formula of integration by parts.
Similarly applying this formula to the given integral $\int {{{\sec }^n}x\tan xdx} $, but here the ${f_1}(x) = {\sec ^{n - 2}}x$ and ${f_2}(x) = {\sec ^2}x\tan x$, and proceeding by substitution for $\tan x = t$. Either of the methods give the same final answer.
In this problem we are going to do the integration of the given integral by the method of integration by substitution.
Complete step-by-step answer:
Integration by substitution is the method where the function inside the integral is assigned another variable of integration. That is we are going to substitute another variable instead of the original function, which makes the integration process much easier.
Given an indefinite integral, we have to find the integral of $\int {{{\sec }^n}x\tan xdx} $.
Consider the integral $\int {{{\sec }^n}x\tan xdx} $, as given below:
$ \Rightarrow \int {{{\sec }^n}x\tan xdx} $
$ \Rightarrow \int {{{\sec }^{n - 1 + 1}}x\tan xdx} $
Here ${\sec ^{n - 1 + 1}}x = {\sec ^{n - 1}}x\sec x$, as expressed below in the integral.
$ \Rightarrow \int {{{\sec }^{n - 1}}x\sec x\tan xdx} $
Applying the integration by substitution method on the integral, as given below:
Let $\sec x = t$ ;
Now differentiate the above equation on both sides, as given below:
$ \Rightarrow \sec x\tan xdx = dt$
Here $\sec x = t$, hence ${\sec ^{n - 1}}x = {t^{n - 1}}$
Now substitute all the above expressions in the integral $\int {{{\sec }^{n - 1}}x\sec x\tan xdx} $, as given below:
$ \Rightarrow \int {{t^{n - 1}}dt} $
$ \Rightarrow \dfrac{{{t^{n - 1 + 1}}}}{{n - 1 + 1}} + c$
$ \Rightarrow \dfrac{{{t^n}}}{n} + c$
Substitute back what the variable $t$ was assigned for $t = \sec x$, as given below:
$ \Rightarrow \dfrac{{{{\sec }^n}x}}{n} + c$
$\therefore \int {{{\sec }^n}x\tan xdx} = \dfrac{{{{\sec }^n}x}}{n} + c$
$\int {{{\sec }^n}x\tan xdx} = \dfrac{{{{\sec }^n}x}}{n} + c$
Note:
Please note that this problem of integration can also be done by the method of integration by parts, which is the integration of the product of two functions which is given by the formula of integration by parts.
Similarly applying this formula to the given integral $\int {{{\sec }^n}x\tan xdx} $, but here the ${f_1}(x) = {\sec ^{n - 2}}x$ and ${f_2}(x) = {\sec ^2}x\tan x$, and proceeding by substitution for $\tan x = t$. Either of the methods give the same final answer.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell