
In the reaction of the formation of sulphur trioxide by contact process; $\text{ 2S}{{\text{O}}_{\text{2}}}\text{+}{{\text{O}}_{\text{2}}}\rightleftharpoons \text{2S}{{\text{O}}_{\text{3}}}\text{ }$, the rate of reaction was measured as $\text{ }\dfrac{\text{d}\left[ {{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{=-2}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\text{ }$ . The rate of disappearance of $\left[ \text{S}{{\text{O}}_{\text{2}}} \right]$ in $\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}\text{ }$ will be:
(A) $\text{ }-3.75\times {{10}^{-4}}$
(B) $\text{ }-1.25\times {{10}^{-4}}$
(C) $\text{ }-2.50\times {{10}^{-4}}$
(D) $\text{ }-5.00\times {{10}^{-4}}$
Answer
233.4k+ views
Hint: We know that according to kinetics, the rate of a reaction is equal to the rate of disappearance of the reactants or the rate of formation of products.
If a reaction is$\text{ A + B }\rightleftharpoons \text{ C + D }$,
Then the rate of this reaction is given as,
$\text{ }\dfrac{-\text{d}\left[ \text{A} \right]}{\text{dt}}\text{=}\dfrac{-\text{d}\left[ \text{B} \right]}{\text{dt}}\text{=}\dfrac{\text{d}\left[ \text{C} \right]}{\text{dt}}\text{=}\dfrac{\text{d}\left[ \text{D} \right]}{\text{dt}}\text{ }$.
Where, the $\left[ \text{A} \right]$ ,$\left[ \text{B} \right]$ , $\left[ \text{C} \right]$ and $\left[ \text{D} \right]$ are the concentration of reactant and product.
Complete step by step solution:
Chemical Kinetics is a branch of chemistry that deals with the study of the rate of a reaction.
We know that the rate of reaction is the rate of disappearance of reactants or the rate of formation of products.
For a reaction, the rate of reaction can be written in terms of the concentration of the product or reactant. For a balanced chemical reaction, the stoichiometric coefficients of the reactant and product are written in the denominator with their rate expression.
We are given with a reaction of $\text{S}{{\text{O}}_{\text{2}}}$ with${{\text{O}}_{\text{2}}}$ that produces$\text{S}{{\text{O}}_{\text{3}}}$.
The reaction is as follows:
$\text{ 2S}{{\text{O}}_{\text{2}}}\text{+}{{\text{O}}_{\text{2}}}\rightleftharpoons \text{2S}{{\text{O}}_{\text{3}}}\text{ }$
From the reaction,
The rate of disappearance of reactants i.e. $\text{S}{{\text{O}}_{\text{2}}}$ would be equal to $\dfrac{-1}{\text{ }2}\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}$ . Since the 2 molecules of $\text{ S}{{\text{O}}_{\text{2}}}\text{ }$are taking part in the reaction.
We know that the rate of reaction of the reactant is equal. Thus, the rate of disappearance of $\text{S}{{\text{O}}_{\text{2}}}$ will is equal to the disappearance of ${{\text{O}}_{\text{2}}}$ and equal to the formation of$\text{S}{{\text{O}}_{\text{3}}}$.
Therefore, the relation can be given as,
$\dfrac{\text{d}\left[ {{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{ = }\dfrac{1}{2}\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= }-\text{2}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{mol}{{\text{L}}^{\text{-1}}}{{\text{s}}^{\text{-1}}}$
Since, we are given that,
$\text{Rate of reaction =}~-\text{2}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{mol}{{\text{L}}^{\text{-1}}}{{\text{s}}^{\text{-1}}}$
So, the rate of disappearance of $\left[ \text{S}{{\text{O}}_{\text{2}}} \right]$ will be,
$\begin{align}
& \text{ }\dfrac{1}{2}\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= }-\text{2}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}} \\
& \text{ }\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= 2}\times \text{(}-\text{2}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}) \\
& \therefore \dfrac{\text{ d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= }-5.0\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}} \\
\end{align}$
Therefore, the rate of disappearance of $\text{ }\left[ \text{S}{{\text{O}}_{\text{2}}} \right]\text{ }$will be$-5.0\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}$.
Hence, (D) is correct.
Note: Remember that the rate of reaction is always a non-negative value. It can be zero or not but it must be an integer. The negative sign before the concentration of reactant is because the concentration of reactant decreases and for a product the concentration goes on the increase, thus it has a positive sign. Always start with a balanced chemical reaction.
If a reaction is$\text{ A + B }\rightleftharpoons \text{ C + D }$,
Then the rate of this reaction is given as,
$\text{ }\dfrac{-\text{d}\left[ \text{A} \right]}{\text{dt}}\text{=}\dfrac{-\text{d}\left[ \text{B} \right]}{\text{dt}}\text{=}\dfrac{\text{d}\left[ \text{C} \right]}{\text{dt}}\text{=}\dfrac{\text{d}\left[ \text{D} \right]}{\text{dt}}\text{ }$.
Where, the $\left[ \text{A} \right]$ ,$\left[ \text{B} \right]$ , $\left[ \text{C} \right]$ and $\left[ \text{D} \right]$ are the concentration of reactant and product.
Complete step by step solution:
Chemical Kinetics is a branch of chemistry that deals with the study of the rate of a reaction.
We know that the rate of reaction is the rate of disappearance of reactants or the rate of formation of products.
For a reaction, the rate of reaction can be written in terms of the concentration of the product or reactant. For a balanced chemical reaction, the stoichiometric coefficients of the reactant and product are written in the denominator with their rate expression.
We are given with a reaction of $\text{S}{{\text{O}}_{\text{2}}}$ with${{\text{O}}_{\text{2}}}$ that produces$\text{S}{{\text{O}}_{\text{3}}}$.
The reaction is as follows:
$\text{ 2S}{{\text{O}}_{\text{2}}}\text{+}{{\text{O}}_{\text{2}}}\rightleftharpoons \text{2S}{{\text{O}}_{\text{3}}}\text{ }$
From the reaction,
The rate of disappearance of reactants i.e. $\text{S}{{\text{O}}_{\text{2}}}$ would be equal to $\dfrac{-1}{\text{ }2}\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}$ . Since the 2 molecules of $\text{ S}{{\text{O}}_{\text{2}}}\text{ }$are taking part in the reaction.
We know that the rate of reaction of the reactant is equal. Thus, the rate of disappearance of $\text{S}{{\text{O}}_{\text{2}}}$ will is equal to the disappearance of ${{\text{O}}_{\text{2}}}$ and equal to the formation of$\text{S}{{\text{O}}_{\text{3}}}$.
Therefore, the relation can be given as,
$\dfrac{\text{d}\left[ {{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{ = }\dfrac{1}{2}\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= }-\text{2}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{mol}{{\text{L}}^{\text{-1}}}{{\text{s}}^{\text{-1}}}$
Since, we are given that,
$\text{Rate of reaction =}~-\text{2}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{mol}{{\text{L}}^{\text{-1}}}{{\text{s}}^{\text{-1}}}$
So, the rate of disappearance of $\left[ \text{S}{{\text{O}}_{\text{2}}} \right]$ will be,
$\begin{align}
& \text{ }\dfrac{1}{2}\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= }-\text{2}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}} \\
& \text{ }\dfrac{\text{d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= 2}\times \text{(}-\text{2}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}) \\
& \therefore \dfrac{\text{ d}\left[ \text{S}{{\text{O}}_{\text{2}}} \right]}{\text{dt}}\text{= }-5.0\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}} \\
\end{align}$
Therefore, the rate of disappearance of $\text{ }\left[ \text{S}{{\text{O}}_{\text{2}}} \right]\text{ }$will be$-5.0\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-4}}}\text{ mol }{{\text{L}}^{\text{-1}}}\text{ }{{\text{s}}^{\text{-1}}}$.
Hence, (D) is correct.
Note: Remember that the rate of reaction is always a non-negative value. It can be zero or not but it must be an integer. The negative sign before the concentration of reactant is because the concentration of reactant decreases and for a product the concentration goes on the increase, thus it has a positive sign. Always start with a balanced chemical reaction.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

