
In the one- dimensional motion of a particle, the relation between position $x$ and time $t$ s given by ${x^2} + 2x = t$ ( here $x > 0$ ). Choose the correct statement:
(A) The retardation of the particle is $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$
(B) The uniform acceleration of the particle is $\dfrac{1}{{{{\left( {x + 1} \right)}^3}}}$
(C) The uniform velocity of the particle is $\dfrac{1}{{{{\left( {x + 1} \right)}^3}}}$
(D) The particle has a variable acceleration of $4t + 6$
Answer
232.8k+ views
Hint:- The rate of change of displacement with time gives the velocity. Thus if we differentiate the displacement with respect to time will give velocity. And when we differentiate the velocity with respect to time will give acceleration.
Complete Step by step answer:
If a function is described as the position of a body as a function of time, then we can differentiate it with respect to time. The first derivative gives the velocity of the body. The second derivative gives the acceleration of the body.
The equation connecting the displacement $x$ and time $t$ is given as,
${x^2} + 2x = t$
Differentiating the above equation with respect to time,
$\
\dfrac{d}{{dt}}\left( {{x^2} + 2x} \right) = \dfrac{d}{{dt}}\left( t \right) \\
2x.\dfrac{{dx}}{{dt}} + 2.\dfrac{{dx}}{{dt}} = 1 \\
\ $
Differentiating the displacement with respect to time will give the velocity.
$\
2x.v + 2.v = 1 \\
\Rightarrow 2v\left( {x + 1} \right) = 1 \\
\Rightarrow 2v = \dfrac{1}{{\left( {x + 1} \right)}} \\
\Rightarrow v = \dfrac{1}{{2\left( {x + 1} \right)}} \\
\ $
Differentiating the velocity with respect to time will give the acceleration.
That is, $a = \dfrac{{dv}}{{dt}}$
Thus calculating, we get
$\
a = \dfrac{d}{{dt}}\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{1}{2}\dfrac{d}{{dt}}\dfrac{1}{{\left( {x + 1} \right)}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}\dfrac{d}{{dt}}\left( {x + 1} \right) \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{{dx}}{{dt}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.v \\
\ $
Substitute the value for velocity in above expression.
$\
a = \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}} \\
\ $
The acceleration is calculated as $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$.
The acceleration is a negative value. This implies the retardation or decrease in acceleration.
The retardation of the particle is $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$
The answer is option A
Note: The negative value of the acceleration implies the retardation. If the acceleration is positive, the velocity will increase. When the acceleration is negative, the velocity will decrease.
Complete Step by step answer:
If a function is described as the position of a body as a function of time, then we can differentiate it with respect to time. The first derivative gives the velocity of the body. The second derivative gives the acceleration of the body.
The equation connecting the displacement $x$ and time $t$ is given as,
${x^2} + 2x = t$
Differentiating the above equation with respect to time,
$\
\dfrac{d}{{dt}}\left( {{x^2} + 2x} \right) = \dfrac{d}{{dt}}\left( t \right) \\
2x.\dfrac{{dx}}{{dt}} + 2.\dfrac{{dx}}{{dt}} = 1 \\
\ $
Differentiating the displacement with respect to time will give the velocity.
$\
2x.v + 2.v = 1 \\
\Rightarrow 2v\left( {x + 1} \right) = 1 \\
\Rightarrow 2v = \dfrac{1}{{\left( {x + 1} \right)}} \\
\Rightarrow v = \dfrac{1}{{2\left( {x + 1} \right)}} \\
\ $
Differentiating the velocity with respect to time will give the acceleration.
That is, $a = \dfrac{{dv}}{{dt}}$
Thus calculating, we get
$\
a = \dfrac{d}{{dt}}\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{1}{2}\dfrac{d}{{dt}}\dfrac{1}{{\left( {x + 1} \right)}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}\dfrac{d}{{dt}}\left( {x + 1} \right) \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{{dx}}{{dt}} \\
= \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.v \\
\ $
Substitute the value for velocity in above expression.
$\
a = \dfrac{1}{2}.\dfrac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}.\dfrac{1}{{2\left( {x + 1} \right)}} \\
= \dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}} \\
\ $
The acceleration is calculated as $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$.
The acceleration is a negative value. This implies the retardation or decrease in acceleration.
The retardation of the particle is $\dfrac{{ - 1}}{{4{{\left( {x + 1} \right)}^3}}}$
The answer is option A
Note: The negative value of the acceleration implies the retardation. If the acceleration is positive, the velocity will increase. When the acceleration is negative, the velocity will decrease.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

