Answer
Verified
454.8k+ views
Hint: The equivalent resistance in a series combination of n resistors is given by ${R_{eq}} = {R_1} + {R_2} + {R_3} + ..... + {R_n}$
The equivalent resistance in a series combination of n resistors is given by $\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}} + ..... + \dfrac{1}{{{R_n}}}$
Total current in circuit is given by $I = \dfrac{E}{{{R_{eq}}}}$ where $E$ is the emf of the battery source and ${R_{eq}}$ of the circuit.
Complete step by step solution:
As from the figure it is clear that ${R_3},{R_4},{R_5}$ are in series and we know that the equivalent resistance in a series combination of n resistors is given by ${R_{eq}} = {R_1} + {R_2} + {R_3} + ..... + {R_n}$
Let $X$ be the equivalent resistance of ${R_3},{R_4},{R_5}$ .
So, $X = 20 + 5 + 25 = 50\Omega $
Now, $X$ and ${R_2}$ is in parallel and we know that the equivalent resistance in a series combination of n resistors is given by $\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}} + ..... + \dfrac{1}{{{R_n}}}$
Let $Y$ be the equivalent resistance of $X$ and ${R_2}$
Then, $\dfrac{1}{Y} = \dfrac{1}{X} + \dfrac{1}{{{R_2}}} = \dfrac{1}{{50}} + \dfrac{1}{{10}}$
On simplification, we get $Y = \dfrac{{25}}{3}$
Now, ${R_1},Y,{R_6}$ will be in parallel.
So, the total equivalent resistance of the circuit, ${R_{eq}} = {R_1} + Y + {R_6} = 15 + \dfrac{{25}}{3} + 30$
On simplifying we have ${R_{eq}} = \dfrac{{160}}{3}$
As we know that total current in the circuit is given by $I = \dfrac{E}{{{R_{eq}}}}$ where $E$ is the emf of the battery source and ${R_{eq}}$ of the circuit. This relation is derived from Ohm’s law.
It is given in the question that emf $E = 15V$
So, the current drawn from the battery is $I = \dfrac{{15 \times 3}}{{160}} = \dfrac{9}{{32}}amp$.
$\therefore$ So, the current drawn from the battery is $I = \dfrac{9}{{32}}amp$. Hence, option (C) is the correct answer.
Note:
Ohm’s principal discovery was that the amount of electric current through a metal conductor in a circuit is directly proportional to the voltage impressed across it, for any given temperature. Ohm expressed his discovery in the form of a simple equation, describing how voltage, current, and resistance interrelate:
$E = IR$ where $E$ is the emf of the battery source, $I$ is the current and $R$ is the resistance.
The equivalent resistance in a series combination of n resistors is given by $\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}} + ..... + \dfrac{1}{{{R_n}}}$
Total current in circuit is given by $I = \dfrac{E}{{{R_{eq}}}}$ where $E$ is the emf of the battery source and ${R_{eq}}$ of the circuit.
Complete step by step solution:
As from the figure it is clear that ${R_3},{R_4},{R_5}$ are in series and we know that the equivalent resistance in a series combination of n resistors is given by ${R_{eq}} = {R_1} + {R_2} + {R_3} + ..... + {R_n}$
Let $X$ be the equivalent resistance of ${R_3},{R_4},{R_5}$ .
So, $X = 20 + 5 + 25 = 50\Omega $
Now, $X$ and ${R_2}$ is in parallel and we know that the equivalent resistance in a series combination of n resistors is given by $\dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + \dfrac{1}{{{R_3}}} + ..... + \dfrac{1}{{{R_n}}}$
Let $Y$ be the equivalent resistance of $X$ and ${R_2}$
Then, $\dfrac{1}{Y} = \dfrac{1}{X} + \dfrac{1}{{{R_2}}} = \dfrac{1}{{50}} + \dfrac{1}{{10}}$
On simplification, we get $Y = \dfrac{{25}}{3}$
Now, ${R_1},Y,{R_6}$ will be in parallel.
So, the total equivalent resistance of the circuit, ${R_{eq}} = {R_1} + Y + {R_6} = 15 + \dfrac{{25}}{3} + 30$
On simplifying we have ${R_{eq}} = \dfrac{{160}}{3}$
As we know that total current in the circuit is given by $I = \dfrac{E}{{{R_{eq}}}}$ where $E$ is the emf of the battery source and ${R_{eq}}$ of the circuit. This relation is derived from Ohm’s law.
It is given in the question that emf $E = 15V$
So, the current drawn from the battery is $I = \dfrac{{15 \times 3}}{{160}} = \dfrac{9}{{32}}amp$.
$\therefore$ So, the current drawn from the battery is $I = \dfrac{9}{{32}}amp$. Hence, option (C) is the correct answer.
Note:
Ohm’s principal discovery was that the amount of electric current through a metal conductor in a circuit is directly proportional to the voltage impressed across it, for any given temperature. Ohm expressed his discovery in the form of a simple equation, describing how voltage, current, and resistance interrelate:
$E = IR$ where $E$ is the emf of the battery source, $I$ is the current and $R$ is the resistance.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell