
In the disintegration series ${^{238}_{92}}U{ \to ^\alpha }X{ \to ^{{\beta ^{ - 1}}}}{^A_Z}Y$
The values of $Z$ and $A$ are
A) $92,326$
B) $88,230$
C) $90,234$
D) $91,234$
Answer
569.4k+ views
Hint:Emission of an alpha particle causes a loss of mass of $4amu$ and a polarity loss of $ + 2$. The emission of a beta particle causes no loss of mass but a polarity loss of $ - 1$. By balancing the mass and charge we will find the atomic weight and mass of the final particle.
Formulae used:Loss of mass and a polarity loss due to alpha particle $\alpha $ emission: $\Delta M = 4(2n + 2p),\Delta Z = 2$.
Where $\Delta M$ is the loss of mass, $n$ is the mass of a neutron particle and $p$ is the mass of proton particles.
Loss of mass and a polarity loss due to beta particle $\beta $ emission: $\Delta M = 0,\Delta Z = - 1$
Step by step solution:
For atomic mass calculation:
When an alpha particle is emitted, the body from which it is emitted loses a mass equivalent to \[2n\] and \[2p\]. Applying these we get the relation $\Delta M = (2n + 2p)$ for mass change. We know that the mass of a neutron and proton is approximately $1amu$ each. Therefore, the loss in mass is equivalent to $\Delta M = (2n + 2p) = (2 + 2) = 4amu$.
The change in mass due to beta emission is $\Delta M = 0$ as they have negligible mass.
The atomic mass of the given particle is $238amu$.
Therefore, total change in mass due to alpha emission is determined by substituting these values:
$A = 238 - 4 = 234$
For atomic charge calculation:
When an alpha particle is emitted, the body from which it is emitted from losses charge equivalent to $ + 2$. Applying these we get the relation $\Delta Z = 2$ for charge loss.
The change in charge due to beta emission is $\Delta Z = - 1$.
The atomic mass of the given particle is $92$.
Therefore, total change in mass due to alpha emission is determined by substituting these values:
$Z = 92 - ( + 2 - 1) = 92 - 2 + 1 = 91$
Therefore, the final atomic mass $A$ and atomic charge $Z$ of the particle $Y$ are $234$ and $91$ respectively.
In conclusion, the correct option is D.
Note:An alpha particle is a helium nuclei that has been stripped of its electrons. Therefore, it only consists of two proton and neutron particles. A beta particle is nothing but a high speed electron. Therefore it has negligible mass and a unit negative charge, just like an electron.
Formulae used:Loss of mass and a polarity loss due to alpha particle $\alpha $ emission: $\Delta M = 4(2n + 2p),\Delta Z = 2$.
Where $\Delta M$ is the loss of mass, $n$ is the mass of a neutron particle and $p$ is the mass of proton particles.
Loss of mass and a polarity loss due to beta particle $\beta $ emission: $\Delta M = 0,\Delta Z = - 1$
Step by step solution:
For atomic mass calculation:
When an alpha particle is emitted, the body from which it is emitted loses a mass equivalent to \[2n\] and \[2p\]. Applying these we get the relation $\Delta M = (2n + 2p)$ for mass change. We know that the mass of a neutron and proton is approximately $1amu$ each. Therefore, the loss in mass is equivalent to $\Delta M = (2n + 2p) = (2 + 2) = 4amu$.
The change in mass due to beta emission is $\Delta M = 0$ as they have negligible mass.
The atomic mass of the given particle is $238amu$.
Therefore, total change in mass due to alpha emission is determined by substituting these values:
$A = 238 - 4 = 234$
For atomic charge calculation:
When an alpha particle is emitted, the body from which it is emitted from losses charge equivalent to $ + 2$. Applying these we get the relation $\Delta Z = 2$ for charge loss.
The change in charge due to beta emission is $\Delta Z = - 1$.
The atomic mass of the given particle is $92$.
Therefore, total change in mass due to alpha emission is determined by substituting these values:
$Z = 92 - ( + 2 - 1) = 92 - 2 + 1 = 91$
Therefore, the final atomic mass $A$ and atomic charge $Z$ of the particle $Y$ are $234$ and $91$ respectively.
In conclusion, the correct option is D.
Note:An alpha particle is a helium nuclei that has been stripped of its electrons. Therefore, it only consists of two proton and neutron particles. A beta particle is nothing but a high speed electron. Therefore it has negligible mass and a unit negative charge, just like an electron.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

