Answer
Verified
435.6k+ views
Hint:Emission of an alpha particle causes a loss of mass of $4amu$ and a polarity loss of $ + 2$. The emission of a beta particle causes no loss of mass but a polarity loss of $ - 1$. By balancing the mass and charge we will find the atomic weight and mass of the final particle.
Formulae used:Loss of mass and a polarity loss due to alpha particle $\alpha $ emission: $\Delta M = 4(2n + 2p),\Delta Z = 2$.
Where $\Delta M$ is the loss of mass, $n$ is the mass of a neutron particle and $p$ is the mass of proton particles.
Loss of mass and a polarity loss due to beta particle $\beta $ emission: $\Delta M = 0,\Delta Z = - 1$
Step by step solution:
For atomic mass calculation:
When an alpha particle is emitted, the body from which it is emitted loses a mass equivalent to \[2n\] and \[2p\]. Applying these we get the relation $\Delta M = (2n + 2p)$ for mass change. We know that the mass of a neutron and proton is approximately $1amu$ each. Therefore, the loss in mass is equivalent to $\Delta M = (2n + 2p) = (2 + 2) = 4amu$.
The change in mass due to beta emission is $\Delta M = 0$ as they have negligible mass.
The atomic mass of the given particle is $238amu$.
Therefore, total change in mass due to alpha emission is determined by substituting these values:
$A = 238 - 4 = 234$
For atomic charge calculation:
When an alpha particle is emitted, the body from which it is emitted from losses charge equivalent to $ + 2$. Applying these we get the relation $\Delta Z = 2$ for charge loss.
The change in charge due to beta emission is $\Delta Z = - 1$.
The atomic mass of the given particle is $92$.
Therefore, total change in mass due to alpha emission is determined by substituting these values:
$Z = 92 - ( + 2 - 1) = 92 - 2 + 1 = 91$
Therefore, the final atomic mass $A$ and atomic charge $Z$ of the particle $Y$ are $234$ and $91$ respectively.
In conclusion, the correct option is D.
Note:An alpha particle is a helium nuclei that has been stripped of its electrons. Therefore, it only consists of two proton and neutron particles. A beta particle is nothing but a high speed electron. Therefore it has negligible mass and a unit negative charge, just like an electron.
Formulae used:Loss of mass and a polarity loss due to alpha particle $\alpha $ emission: $\Delta M = 4(2n + 2p),\Delta Z = 2$.
Where $\Delta M$ is the loss of mass, $n$ is the mass of a neutron particle and $p$ is the mass of proton particles.
Loss of mass and a polarity loss due to beta particle $\beta $ emission: $\Delta M = 0,\Delta Z = - 1$
Step by step solution:
For atomic mass calculation:
When an alpha particle is emitted, the body from which it is emitted loses a mass equivalent to \[2n\] and \[2p\]. Applying these we get the relation $\Delta M = (2n + 2p)$ for mass change. We know that the mass of a neutron and proton is approximately $1amu$ each. Therefore, the loss in mass is equivalent to $\Delta M = (2n + 2p) = (2 + 2) = 4amu$.
The change in mass due to beta emission is $\Delta M = 0$ as they have negligible mass.
The atomic mass of the given particle is $238amu$.
Therefore, total change in mass due to alpha emission is determined by substituting these values:
$A = 238 - 4 = 234$
For atomic charge calculation:
When an alpha particle is emitted, the body from which it is emitted from losses charge equivalent to $ + 2$. Applying these we get the relation $\Delta Z = 2$ for charge loss.
The change in charge due to beta emission is $\Delta Z = - 1$.
The atomic mass of the given particle is $92$.
Therefore, total change in mass due to alpha emission is determined by substituting these values:
$Z = 92 - ( + 2 - 1) = 92 - 2 + 1 = 91$
Therefore, the final atomic mass $A$ and atomic charge $Z$ of the particle $Y$ are $234$ and $91$ respectively.
In conclusion, the correct option is D.
Note:An alpha particle is a helium nuclei that has been stripped of its electrons. Therefore, it only consists of two proton and neutron particles. A beta particle is nothing but a high speed electron. Therefore it has negligible mass and a unit negative charge, just like an electron.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE