Answer
Verified
448.8k+ views
Hint:Notice the sign of the real and the complex part of the complex number to think about the quadrant. It is the same as any ordered pair on the plain. Real part of the given complex number is $4$ and the imaginary part of the complex number is $3$.
Complete step-by-step answer:
We have given a complex number $4 + 3i$.
The goal is to find the location of this given complex number.
Any complex number id formed by a real number and an imaginary number and this number can be expressed as:
$C = a + ib$, here $a$ is the real part of the complex number and $b$ is the imaginary part of the complex number.
We have given a complex number $4 + 3i$, then the real part of this complex number is $4$ and the complex part of this number is $3$.
In the case of a complex plane, the $x - $ axis is denoted as the real part of the complex number and $y - $axis is denoted as the imaginary part of the complex number.
The ordered pair to plot this complex number is $\left( {4,3} \right)$.
Notice the values of the both coordinates are positive.
We know that,
First quadrant → $\left( {x,y} \right)$ [Both $x$ and $y$ coordinate are positive]
Second quadrant → $\left( { - x,y} \right)$ [$x$ is negative, $y$ is positive]
Third quadrant → $\left( { - x, - y} \right)$ [Both $x$ and $y$ are negative]
Fourth quadrant → $\left( {x, - y} \right)$ [$x$ is positive, $y$ is negative]
Hence, $4 + 3i$ lies in the first quadrant.
Note:The complex plane is the same as the Cartesian plane, the real part of the complex number is equivalent to the x-axis and the imaginary part of the complex number is equivalent to the y-axis.
Complete step-by-step answer:
We have given a complex number $4 + 3i$.
The goal is to find the location of this given complex number.
Any complex number id formed by a real number and an imaginary number and this number can be expressed as:
$C = a + ib$, here $a$ is the real part of the complex number and $b$ is the imaginary part of the complex number.
We have given a complex number $4 + 3i$, then the real part of this complex number is $4$ and the complex part of this number is $3$.
In the case of a complex plane, the $x - $ axis is denoted as the real part of the complex number and $y - $axis is denoted as the imaginary part of the complex number.
The ordered pair to plot this complex number is $\left( {4,3} \right)$.
Notice the values of the both coordinates are positive.
We know that,
First quadrant → $\left( {x,y} \right)$ [Both $x$ and $y$ coordinate are positive]
Second quadrant → $\left( { - x,y} \right)$ [$x$ is negative, $y$ is positive]
Third quadrant → $\left( { - x, - y} \right)$ [Both $x$ and $y$ are negative]
Fourth quadrant → $\left( {x, - y} \right)$ [$x$ is positive, $y$ is negative]
Hence, $4 + 3i$ lies in the first quadrant.
Note:The complex plane is the same as the Cartesian plane, the real part of the complex number is equivalent to the x-axis and the imaginary part of the complex number is equivalent to the y-axis.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths