Answer
Verified
437.7k+ views
Hint:An electric circuit and each component of the circuit are known as an element. The given circuit is connected from the resistance values $20\Omega $ and$5\Omega $.
The ideal diodes are connected from the ${S_{1{\text{ }}}}{\text{and }}{S_2}$ switches.
Complete step by step answer:
It is given ${V_A} > {V_B},$so current flows from A to B.
From the below figure when ${S_1}$ is open and ${S_2}$is closed
-The diode at ${S_2}$passes current only from D to C else zero current.
-If the current passes through the diode the voltage will be equal to D and C.
Let us assume that the D and C voltages are equal. Now we can short the ${S_2}$part.
Now in the equivalent circuit as$20\Omega > 5\Omega $current flows from D to C.
So it is satisfying the diode property.
Our circuit equivalent circuit will be the above circuit.
So the equivalent resistance $ = 2 \times \dfrac{1}{{\left( {\dfrac{1}{{20}} + \dfrac{1}{5}} \right)}}\Omega $
Here we have to take an LCM on the denominator term we get
$ = 2 \times \dfrac{1}{{\left( {\dfrac{{1 + 4}}{{20}}} \right)}}\Omega $
Let us add the term we get
$ = 2 \times \dfrac{1}{{\left( {\dfrac{5}{{20}}} \right)}}\Omega $
On dividing the term we get
$ = 2 \times \dfrac{1}{{\left( {\dfrac{1}{4}} \right)}}\Omega $
Taking reciprocal of the numerator term and multiply it we get,
$ = 8\Omega $
Now,${S_1}$ is closed and ${S_2}$is open
-The diode at ${S_1}$passes current only from C to D or else zero current.
- If current passes through the diode the voltage will be equal to D and C.
-Let us assume that the D and C voltage is equal. Now in the equivalent circuit as $20\Omega {\text{ > }}5\Omega $current has to flow from D to C. From D to C current does not allow. So our assumption is wrong.
We have to treat ${S_1}$as open.
The equivalent resistance is $ = \dfrac{{20 + 5}}{2}\Omega $
On adding the numerator term we get
$ = \dfrac{{25}}{2}\Omega $
Let us divide the term we get
$ = 12.5\Omega $
Additional information:
Potential difference, when the current flows between two points A and B of an electric circuit.
Where the aggregate resistance connected either in parallel or series is calculated, it is called equivalent resistance. Essentially, either in Series or Parallel is designed in the circuit
Note: A diode that acts like a perfect conductor, ideal diodes, when voltage is applied forward biased and like a perfect insulator, when voltage is applied reverse biased.
So the anode to the cathode when the positive voltage is applied across, the diode conducts forward current instantly.
The ideal diodes are connected from the ${S_{1{\text{ }}}}{\text{and }}{S_2}$ switches.
Complete step by step answer:
It is given ${V_A} > {V_B},$so current flows from A to B.
From the below figure when ${S_1}$ is open and ${S_2}$is closed
-The diode at ${S_2}$passes current only from D to C else zero current.
-If the current passes through the diode the voltage will be equal to D and C.
Let us assume that the D and C voltages are equal. Now we can short the ${S_2}$part.
Now in the equivalent circuit as$20\Omega > 5\Omega $current flows from D to C.
So it is satisfying the diode property.
Our circuit equivalent circuit will be the above circuit.
So the equivalent resistance $ = 2 \times \dfrac{1}{{\left( {\dfrac{1}{{20}} + \dfrac{1}{5}} \right)}}\Omega $
Here we have to take an LCM on the denominator term we get
$ = 2 \times \dfrac{1}{{\left( {\dfrac{{1 + 4}}{{20}}} \right)}}\Omega $
Let us add the term we get
$ = 2 \times \dfrac{1}{{\left( {\dfrac{5}{{20}}} \right)}}\Omega $
On dividing the term we get
$ = 2 \times \dfrac{1}{{\left( {\dfrac{1}{4}} \right)}}\Omega $
Taking reciprocal of the numerator term and multiply it we get,
$ = 8\Omega $
Now,${S_1}$ is closed and ${S_2}$is open
-The diode at ${S_1}$passes current only from C to D or else zero current.
- If current passes through the diode the voltage will be equal to D and C.
-Let us assume that the D and C voltage is equal. Now in the equivalent circuit as $20\Omega {\text{ > }}5\Omega $current has to flow from D to C. From D to C current does not allow. So our assumption is wrong.
We have to treat ${S_1}$as open.
The equivalent resistance is $ = \dfrac{{20 + 5}}{2}\Omega $
On adding the numerator term we get
$ = \dfrac{{25}}{2}\Omega $
Let us divide the term we get
$ = 12.5\Omega $
Additional information:
Potential difference, when the current flows between two points A and B of an electric circuit.
Where the aggregate resistance connected either in parallel or series is calculated, it is called equivalent resistance. Essentially, either in Series or Parallel is designed in the circuit
Note: A diode that acts like a perfect conductor, ideal diodes, when voltage is applied forward biased and like a perfect insulator, when voltage is applied reverse biased.
So the anode to the cathode when the positive voltage is applied across, the diode conducts forward current instantly.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE