
In milk at $37^\circ C$ Lactobacillus acidophilus has a generation time of about 75 minutes. Calculate the population relative to the initial value at 30,60,75,90 and 150 minutes.
Answer
497.7k+ views
Hint:We have to calculate the relative population by doubling the time after every 75 minutes. Therefore, at any time (t), its population is given by,
$P = {P_0} \times {2^{\left( {t/75} \right)}}$
Here, ${P_0}$ is the initial population.
$P$ is the population at any time t.
Complete step by step answer:
Lactobacillus acidophilus has a generation time of 75 minutes, it doubles itself after every 75minutes. At any time (t), the population of Lactobacillus acidophilus is given by,
$P = {P_0} \times {2^{\left( {t/75} \right)}}$ $\left( 1 \right)$
We can say that population relative is the ratio of population at any time t to the initial population.
We can arrange the equation (1) to get the relative population.
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
Let us now calculate the population relative to initial value at a given time.
Let us substitute the value of t as 30 minutes. At 30 minutes, the population relative is calculated as,
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = {2^{\left( {30/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = 1.319$
The relative population of the bacteria at 30 minutes is $1.319$.
Let us substitute the value of t as 60 minutes. At 60 minutes, the population relative is calculated as,
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = {2^{\left( {60/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = 1.741$
The relative population of the bacteria at 60 minutes is $1.741$.
Let us substitute the value of t as 75 minutes. At 75 minutes, the population relative is calculated as,
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = {2^{\left( {75/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = 2$
The relative population of the bacteria at 75 minutes is $2$.
Let us substitute the value of t as 90 minutes. At 90 minutes, the population relative is calculated as,
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = {2^{\left( {90/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = 2.297$
The relative population of the bacteria at 90 minutes is $2.297$.
Let us substitute the value of t as 150 minutes. At 150 minutes, the population relative is calculated as,
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = {2^{\left( {150/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = 4$
The relative population of the bacteria at 150 minutes is $4$.
Note: We can also calculate the population relative to the initial value by an alternate method. The alternate method is,
For growth kinetics,
$k = - \dfrac{{2.303}}{t}{\log _{10}}\left( {\dfrac{a}{{a + x}}} \right)$
$k = - \dfrac{{2.303}}{t}{\log _{10}}\left( {\dfrac{{{N_0}}}{N}} \right)$
The generation time is 75 minutes. The value of a is taken as 1 and the value of $a + x = 2$
Let us substitute the value of a and value of $a + x$ in the equation,
$k = - \dfrac{{2.303}}{t}{\log _{10}}\left( {\dfrac{1}{{1 + 1}}} \right) = 0.00924{\min ^{ - 1}}$
After thirty minutes, we can calculate the relative population to the initial value as,
$k = - \dfrac{{2.303}}{t}{\log _{10}}\left( {\dfrac{{{N_0}}}{N}} \right)$
Substituting the values we get,
$ \Rightarrow $$0.00924{\min ^{ - 1}} = - \dfrac{{2.303}}{{30}}{\log _{10}}\left( {\dfrac{{{N_0}}}{N}} \right)$
$ \Rightarrow $$\dfrac{N}{{{N_0}}} = 1.319$
The relative population to the initial value after 30 minutes is $1.319$.
We can also the relative population after 60, 75, 90 and 150 minutes by this method.
$P = {P_0} \times {2^{\left( {t/75} \right)}}$
Here, ${P_0}$ is the initial population.
$P$ is the population at any time t.
Complete step by step answer:
Lactobacillus acidophilus has a generation time of 75 minutes, it doubles itself after every 75minutes. At any time (t), the population of Lactobacillus acidophilus is given by,
$P = {P_0} \times {2^{\left( {t/75} \right)}}$ $\left( 1 \right)$
We can say that population relative is the ratio of population at any time t to the initial population.
We can arrange the equation (1) to get the relative population.
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
Let us now calculate the population relative to initial value at a given time.
Let us substitute the value of t as 30 minutes. At 30 minutes, the population relative is calculated as,
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = {2^{\left( {30/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = 1.319$
The relative population of the bacteria at 30 minutes is $1.319$.
Let us substitute the value of t as 60 minutes. At 60 minutes, the population relative is calculated as,
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = {2^{\left( {60/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = 1.741$
The relative population of the bacteria at 60 minutes is $1.741$.
Let us substitute the value of t as 75 minutes. At 75 minutes, the population relative is calculated as,
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = {2^{\left( {75/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = 2$
The relative population of the bacteria at 75 minutes is $2$.
Let us substitute the value of t as 90 minutes. At 90 minutes, the population relative is calculated as,
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = {2^{\left( {90/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = 2.297$
The relative population of the bacteria at 90 minutes is $2.297$.
Let us substitute the value of t as 150 minutes. At 150 minutes, the population relative is calculated as,
$\dfrac{P}{{{P_0}}} = {2^{\left( {t/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = {2^{\left( {150/75} \right)}}$
$ \Rightarrow $$\dfrac{P}{{{P_0}}} = 4$
The relative population of the bacteria at 150 minutes is $4$.
Note: We can also calculate the population relative to the initial value by an alternate method. The alternate method is,
For growth kinetics,
$k = - \dfrac{{2.303}}{t}{\log _{10}}\left( {\dfrac{a}{{a + x}}} \right)$
$k = - \dfrac{{2.303}}{t}{\log _{10}}\left( {\dfrac{{{N_0}}}{N}} \right)$
The generation time is 75 minutes. The value of a is taken as 1 and the value of $a + x = 2$
Let us substitute the value of a and value of $a + x$ in the equation,
$k = - \dfrac{{2.303}}{t}{\log _{10}}\left( {\dfrac{1}{{1 + 1}}} \right) = 0.00924{\min ^{ - 1}}$
After thirty minutes, we can calculate the relative population to the initial value as,
$k = - \dfrac{{2.303}}{t}{\log _{10}}\left( {\dfrac{{{N_0}}}{N}} \right)$
Substituting the values we get,
$ \Rightarrow $$0.00924{\min ^{ - 1}} = - \dfrac{{2.303}}{{30}}{\log _{10}}\left( {\dfrac{{{N_0}}}{N}} \right)$
$ \Rightarrow $$\dfrac{N}{{{N_0}}} = 1.319$
The relative population to the initial value after 30 minutes is $1.319$.
We can also the relative population after 60, 75, 90 and 150 minutes by this method.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE
