
In how many ways can a committee consisting of one or more members be formed out of 12 members of the Municipal Corporation?
A. 4095
B. 5095
C. 4905
D. 4090
Answer
232.5k+ views
Hint: We have to make a committee using 12 members. The committee is consisting of one member or more members. We have to find the number of ways to make committee consisting of one or more members using combination formula. Then add the number of ways to get the required answer.
Formula Used:Combination formula:
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution:The number of members of the Municipal Corporation is 12.
We can make a committee using one or more members of the Municipal Corporation.
Case 1: Making committee using 1 member
The number of ways to make a committee consisting 1 member is \[{}^{12}{C_1}\].
Case 2: Making committee using 2 members
The number of ways to make a committee consisting 2 members is \[{}^{12}{C_2}\]
Case 3: Making committee using 3 members
The number of ways to make a committee consisting 3 members is \[{}^{12}{C_3}\].
Case 4: Making committee using 4 members
The number of ways to make a committee consisting 4 members is \[{}^{12}{C_4}\].
Case 5: Making committee using 5 members
The number of ways to make a committee consisting 5 members is \[{}^{12}{C_5}\].
Case 6: Making committee using 6 members
The number of ways to make a committee consisting 6 members is \[{}^{12}{C_6}\].
Case 7: Making committee using 7 members
The number of ways to make a committee consisting 7 members is \[{}^{12}{C_7}\].
Case 8: Making committee using 8 members
The number of ways to make a committee consisting 8 members is \[{}^{12}{C_8}\].
Case 9: Making committee using 9 members
The number of ways to make a committee consisting 9 members is \[{}^{12}{C_9}\].
Case 10: Making committee using 10 members
The number of ways to make a committee consisting 10 members is \[{}^{12}{C_{10}}\].
Case 11: Making committee using 11 members
The number of ways to make a committee consisting 11 members is \[{}^{12}{C_{11}}\].
Case 12: Making committee using 12 members
The number of ways to make a committee consisting 12 members is \[{}^{12}{C_{12}}\].
We know that,
\[{\left( {1 + x} \right)^{12}} = {}^{12}{C_0} + {}^{12}{C_1}x + {}^{12}{C_2}{x^2} + {}^{12}{C_3}{x^3} + {}^{12}{C_4}{x^4} + {}^{12}{C_5}{x^5} + {}^{12}{C_6}{x^6} + {}^{12}{C_7}{x^7} + \cdots + {}^{12}{C_{11}}{x^{11}} + {}^{12}{C_{12}}{x^{12}}\]
Putting x = 1:
\[{2^{12}} = {}^{12}{C_0} + {}^{12}{C_1} + {}^{12}{C_2} + {}^{12}{C_3} + {}^{12}{C_4} + {}^{12}{C_5} + {}^{12}{C_6} + {}^{12}{C_7} + \cdots + {}^{12}{C_{11}} + {}^{12}{C_{12}}\]
\[ \Rightarrow {2^{12}} = 1 + {}^{12}{C_1} + {}^{12}{C_2} + {}^{12}{C_3} + {}^{12}{C_4} + {}^{12}{C_5} + {}^{12}{C_6} + {}^{12}{C_7} + \cdots + {}^{12}{C_{11}} + {}^{12}{C_{12}}\]
\[ \Rightarrow {2^{12}} - 1 = {}^{12}{C_1} + {}^{12}{C_2} + {}^{12}{C_3} + {}^{12}{C_4} + {}^{12}{C_5} + {}^{12}{C_6} + {}^{12}{C_7} + \cdots + {}^{12}{C_{11}} + {}^{12}{C_{12}}\]
Total number of ways to make committee is \[{}^{12}{C_1} + {}^{12}{C_2} + {}^{12}{C_3} + {}^{12}{C_4} + {}^{12}{C_5} + {}^{12}{C_6} + {}^{12}{C_7} + \cdots + {}^{12}{C_{11}} + {}^{12}{C_{12}}\]
\[ = {2^{12}} - 1\]
\[ = 4096 - 1\]
\[ = 4095\]
Option ‘A’ is correct
Note: Students often make mistake to solve given question. They used permutation formula to solve the given question. But the order of selection does not matter thus we will apply combination formula to solve it.
Formula Used:Combination formula:
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution:The number of members of the Municipal Corporation is 12.
We can make a committee using one or more members of the Municipal Corporation.
Case 1: Making committee using 1 member
The number of ways to make a committee consisting 1 member is \[{}^{12}{C_1}\].
Case 2: Making committee using 2 members
The number of ways to make a committee consisting 2 members is \[{}^{12}{C_2}\]
Case 3: Making committee using 3 members
The number of ways to make a committee consisting 3 members is \[{}^{12}{C_3}\].
Case 4: Making committee using 4 members
The number of ways to make a committee consisting 4 members is \[{}^{12}{C_4}\].
Case 5: Making committee using 5 members
The number of ways to make a committee consisting 5 members is \[{}^{12}{C_5}\].
Case 6: Making committee using 6 members
The number of ways to make a committee consisting 6 members is \[{}^{12}{C_6}\].
Case 7: Making committee using 7 members
The number of ways to make a committee consisting 7 members is \[{}^{12}{C_7}\].
Case 8: Making committee using 8 members
The number of ways to make a committee consisting 8 members is \[{}^{12}{C_8}\].
Case 9: Making committee using 9 members
The number of ways to make a committee consisting 9 members is \[{}^{12}{C_9}\].
Case 10: Making committee using 10 members
The number of ways to make a committee consisting 10 members is \[{}^{12}{C_{10}}\].
Case 11: Making committee using 11 members
The number of ways to make a committee consisting 11 members is \[{}^{12}{C_{11}}\].
Case 12: Making committee using 12 members
The number of ways to make a committee consisting 12 members is \[{}^{12}{C_{12}}\].
We know that,
\[{\left( {1 + x} \right)^{12}} = {}^{12}{C_0} + {}^{12}{C_1}x + {}^{12}{C_2}{x^2} + {}^{12}{C_3}{x^3} + {}^{12}{C_4}{x^4} + {}^{12}{C_5}{x^5} + {}^{12}{C_6}{x^6} + {}^{12}{C_7}{x^7} + \cdots + {}^{12}{C_{11}}{x^{11}} + {}^{12}{C_{12}}{x^{12}}\]
Putting x = 1:
\[{2^{12}} = {}^{12}{C_0} + {}^{12}{C_1} + {}^{12}{C_2} + {}^{12}{C_3} + {}^{12}{C_4} + {}^{12}{C_5} + {}^{12}{C_6} + {}^{12}{C_7} + \cdots + {}^{12}{C_{11}} + {}^{12}{C_{12}}\]
\[ \Rightarrow {2^{12}} = 1 + {}^{12}{C_1} + {}^{12}{C_2} + {}^{12}{C_3} + {}^{12}{C_4} + {}^{12}{C_5} + {}^{12}{C_6} + {}^{12}{C_7} + \cdots + {}^{12}{C_{11}} + {}^{12}{C_{12}}\]
\[ \Rightarrow {2^{12}} - 1 = {}^{12}{C_1} + {}^{12}{C_2} + {}^{12}{C_3} + {}^{12}{C_4} + {}^{12}{C_5} + {}^{12}{C_6} + {}^{12}{C_7} + \cdots + {}^{12}{C_{11}} + {}^{12}{C_{12}}\]
Total number of ways to make committee is \[{}^{12}{C_1} + {}^{12}{C_2} + {}^{12}{C_3} + {}^{12}{C_4} + {}^{12}{C_5} + {}^{12}{C_6} + {}^{12}{C_7} + \cdots + {}^{12}{C_{11}} + {}^{12}{C_{12}}\]
\[ = {2^{12}} - 1\]
\[ = 4096 - 1\]
\[ = 4095\]
Option ‘A’ is correct
Note: Students often make mistake to solve given question. They used permutation formula to solve the given question. But the order of selection does not matter thus we will apply combination formula to solve it.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

