Answer
Verified
465.9k+ views
Hint: First, we will find the numbers of ways all persons can sit without any condition. Then, we will find the numbers of ways everyone can sit considering the persons sit together always and then subtract both to get the required answer.
Complete step-by-step answer:
Let us first get to know how to find the number of ways n persons can sit at a round table.
It is \[(n - 1)!\].
The reason for this is, if we have a straight line we have the answer as $n!$, but when it is transformed in round shape, then among those $n!$, n are the duplicate sitting arrangement of each other which means they are exactly n ways of showing one arrangement. Hence, it becomes \[\dfrac{{n!}}{n} = \dfrac{{n(n - 1)!}}{n} = (n - 1)!\].
Therefore, 5 persons can sit at a round table in $(5 - 1)! = 4! = 4 \times 3 \times 2 \times 1 = 24$ ……(1)
Now, if the two persons always sit together, we can consider them as one unit for once, so we now have to sit 4 people which can be done in $(4 - 1)! = 3! = 3 \times 2 \times 1 = 6$ ways.
But we must remember that the two persons who sat together can sit side by side in two ways, one in left or right of another person.
Hence, the total no. of ways we can sit 5 persons with 2 persons always together is $6 \times 2 = 12$ ways ...(2)
Now, subtracting (2) from (1), we will get:
Number of ways 5 persons sit at a round table, if two persons do not sit together = 24 – 12 = 12 ways
Hence, the answer is 12.
Note: The student might make the mistake of forgetting the fact that n persons can sit together in $(n - 1)!$ ways at a round table because n arrangements represent the same sitting arrangement. So, we have to exclude those.
If you directly approach the question, it will be really difficult to tackle the given condition. So, always try to break your question into parts if required, to make it easy.
Complete step-by-step answer:
Let us first get to know how to find the number of ways n persons can sit at a round table.
It is \[(n - 1)!\].
The reason for this is, if we have a straight line we have the answer as $n!$, but when it is transformed in round shape, then among those $n!$, n are the duplicate sitting arrangement of each other which means they are exactly n ways of showing one arrangement. Hence, it becomes \[\dfrac{{n!}}{n} = \dfrac{{n(n - 1)!}}{n} = (n - 1)!\].
Therefore, 5 persons can sit at a round table in $(5 - 1)! = 4! = 4 \times 3 \times 2 \times 1 = 24$ ……(1)
Now, if the two persons always sit together, we can consider them as one unit for once, so we now have to sit 4 people which can be done in $(4 - 1)! = 3! = 3 \times 2 \times 1 = 6$ ways.
But we must remember that the two persons who sat together can sit side by side in two ways, one in left or right of another person.
Hence, the total no. of ways we can sit 5 persons with 2 persons always together is $6 \times 2 = 12$ ways ...(2)
Now, subtracting (2) from (1), we will get:
Number of ways 5 persons sit at a round table, if two persons do not sit together = 24 – 12 = 12 ways
Hence, the answer is 12.
Note: The student might make the mistake of forgetting the fact that n persons can sit together in $(n - 1)!$ ways at a round table because n arrangements represent the same sitting arrangement. So, we have to exclude those.
If you directly approach the question, it will be really difficult to tackle the given condition. So, always try to break your question into parts if required, to make it easy.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE